Classical Mechanics 2, Spring 2016 CMI

Problem set 12
Due by the beginning of lecture on Monday April 11, 2016
Rigid body, Euler angles

1. $\langle\mathbf{1 2}\rangle$ Consider force-free motion of a symmetrical top with principal moments of inertia $I_{1}=I_{2}>I_{3} \geq 0$. Let the Euler angle θ be the angle between the fixed angular momentum vector in space $\mathbf{L}=L \hat{Z}$ and the axis of the top along $\hat{x}_{3}=\hat{z}$. We use the same conventions as in the lecture. Recall the solution of Euler's equations:

$$
\begin{equation*}
L_{3}=\text { const }, \quad L_{1}=C \cos (\omega t+\delta), \quad L_{2}=C \sin (\omega t+\delta) \quad \text { where } \quad \omega=L_{3}\left(\frac{1}{I_{1}}-\frac{1}{I_{3}}\right) . \tag{1}
\end{equation*}
$$

(a) $\langle\mathbf{3}\rangle$ Relate ω to the generalized velocity $\dot{\psi}$ where ψ is the Euler angle defined earlier [Refer to our discussion on special choice of Euler angles for a symmetric top].
(b) $\langle\mathbf{2}\rangle$ We now consider the limiting case of a rigid rotator by letting $I_{3} \rightarrow 0$ holding $I_{1}=I_{2}$ and L fixed while ω remains finite. How must θ behave in the limit?
(c) $\langle\mathbf{4}\rangle$ From your knowledge of the motion of a rigid rotator and above formulae, what are the limiting values of $\frac{\cos \theta}{I_{3}}, \Omega_{3}$ and ω ?
(d) $\langle\mathbf{3}\rangle$ Qualitatively describe what happens to the manner of rotation of the symmetric top when it becomes a rigid rotator.

