Classical Mechanics 2, Spring 2016 CMI

Problem set 10
Due by the beginning of lecture on Monday Mar 28, 2016
Rigid body

1. $\langle\mathbf{1 0}\rangle$ Consider a system whose phase space is \mathbb{R}^{3} with coordinates L_{1}, L_{2}, L_{3} satisfying the angular momentum Poisson brackets. There is no separation into generalized 'coordinates' and 'momenta' here. $\xi_{i}=L_{i}$ are the coordinates on phase space. This is relevant to the motion of a rigid body.
(a) $\langle\mathbf{3}\rangle$ Write down the angular momentum Poisson brackets $\left\{L_{i}, L_{j}\right\}=\cdots$. Identify the Poisson tensor $r_{i j}(L)$ for the angular momentum Poisson brackets. (We aren't particular about placement of indices here, all indices are placed downstairs.)
(b) $\langle\mathbf{7}\rangle$ Show that $L^{2}=L_{1}^{2}+L_{2}^{2}+L_{3}^{2}$ is conserved under time evolution by any differentiable hamiltonian $H\left(L_{1}, L_{2}, L_{3}\right)$.
