Classical Mechanics 2, Spring 2014 CMI

Problem set 8

Due by the beginning of lecture on Monday Feb 17, 2014 Poisson brackets, angular momentum Poisson brackets

- 1. (6) Consider a free particle moving on the half line q > 0 with Lagrangian $L(q, \dot{q}) = \frac{1}{2}m\dot{q}^2$. Suppose we make the change of coordinate to $Q = q^2$.
 - (a) $\langle 2 \rangle$ Find the new Lagrangian $\tilde{L}(Q, \dot{Q})$.
 - (b) $\langle 2 \rangle$ Find the momentum *P* conjugate to *Q*. Express *P* as a function of *Q* and \dot{Q} and as a function of *q* and *p*.
 - (c) $\langle 2 \rangle$ Find the Poisson bracket $\{Q, P\}$ and compare with $\{q, p\}$.
- 2. $\langle 22 \rangle$ Angular momentum Poisson brackets from $\{r_i, p_j\} = \delta_{ij}$. We place all indices down-stairs in this problem, and sum repeated indices.
 - (a) $\langle 1 \rangle$ Define the Levi-Civita symbol ϵ_{ijk} for $1 \le i, j, k \le 3$ by the condition that it is antisymmetric under interchange of any pair of *neighbouring* indices along with the 'initial' condition $\epsilon_{123} = 1$. Show that it is anti-symmetric under interchange of any pair of indices, (not necessarily neighbors).
 - (b) $\langle 3 \rangle$ Give the values of all the components of the ϵ symbol. How many components are there in all?
 - (c) $\langle 3 \rangle$ From $\vec{L} = \vec{r} \times \vec{p}$ write the three components of angular momentum L_x, L_y, L_z in terms of x, y, z, p_x, p_y, p_z and show that they may be summarized by the formula $L_i = \epsilon_{ijk}r_jp_k$. Repeated indices are summed.
 - (d) $\langle 7 \rangle$ Use the properties of the Poisson bracket and the identity

$$\sum_{i=1}^{3} \epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}.$$
 (1)

to show that

$$\{L_i, L_j\} = r_i p_j - r_j p_i.$$
⁽²⁾

For uniformity of notation, begin by taking $L_i = \epsilon_{ikl} r_k p_l$ and $L_j = \epsilon_{jmn} r_m p_n$

- (e) $\langle 2 \rangle$ Use the above formula for L_i to show that $\epsilon_{ijk}L_k = r_i p_j r_j p_i$.
- (f) $\langle 2 \rangle$ Conclude from the last two questions that

$$\{L_i, L_i\} = \epsilon_{i\,ik} L_k \tag{3}$$

Compare this with the 3 formulae derived in lecture: $\{L_x, L_y\} = L_z$ and cyclic permutations thereof. Do they agree?

(g) $\langle 2 \rangle$ Use the above results to show that

$$\{\{L_i, L_j\}, L_k\} = \delta_{ik}L_j - \delta_{jk}L_i. \tag{4}$$

(h) $\langle 2 \rangle$ Show that the components of angular momentum satisfy the Jacobi identity

$$\{\{L_i, L_j\}, L_k\} + \{\{L_j, L_k\}, L_i\} + \{\{L_k, L_i\}, L_j\} = 0.$$
(5)