Classical Mechanics 2, Spring 2014 CMI

Problem set 7

Due by the beginning of lecture on Monday Feb 10, 2014 Poisson brackets

- 1. $\langle \mathbf{4} \rangle$ Find the *unequal* time p.b. $\{q(0), q(t)\}$ for a free particle of mass m moving on a line.
- 2. $\langle 23 \rangle$ Consider a particle moving on the plane $L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) V(x,y)$. x,y,p_x,p_y are the usual coordinates and momenta on phase space satisfying canonical Poisson bracket relations. Define the dynamical variables (plane polars) $r(x,y) = \sqrt{x^2 + y^2}$ and $\theta(x,y) = \arctan(y/x)$. Recall that the Lagrangian in terms of polar coordinates is $\tilde{L}(r,\theta,\dot{r},\dot{\theta}) = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) \tilde{V}(r,\theta)$. We wish to compute the p.b. among polar coordinates and their conjugate momenta using the definition $\{f,g\} = f_x g_{p_x} f_{p_x} g_x + f_y g_{p_y} f_{p_y} g_y$. Here subscripts denote partial derivatives.
 - (a) $\langle \mathbf{3} \rangle$ Express the conjugate momenta p_r, p_θ as functions on phase space (i.e., in terms of x, y, p_x, p_y). Show that you get

$$p_r = \frac{x}{r(x, y)} p_x + \frac{y}{r(x, y)} p_y \quad \text{and} \quad p_\theta = x p_y - y p_x.$$
 (1)

(b) $\langle \mathbf{4} \rangle$ Find the partial derivatives (denoted by subscripts) $r_x, r_y, \theta_x, \theta_y$. Show that you get

$$r_x = \frac{x}{r}, \quad r_y = \frac{y}{r}, \quad \theta_x = -\frac{y}{r^2}, \quad \theta_y = \frac{x}{r^2}.$$
 (2)

- (c) $\langle \mathbf{1} \rangle$ Find the partial derivatives of r, θ with respect to p_x and p_y : $r_{p_x}, r_{p_y}, \theta_{p_x}, \theta_{p_y}$.
- (d) $\langle \mathbf{8} \rangle$ Find the partial derivatives of p_r, p_θ with respect to x, y, p_x, p_y . You must give 8 formulae, two of which must be shown to be

$$(p_r)_x = \frac{p_x}{r} - \frac{x^2}{r^3} p_x - \frac{xy}{r^3} p_y$$
 and $(p_r)_y = \frac{p_y}{r} - \frac{y^2}{r^3} p_y - \frac{xy}{r^3} p_x$. (3)

- (e) $\langle \mathbf{6} \rangle$ Find the 6 (after accounting for anti-symmetry) p.b. among polar coordinates and momenta (i) $\{r, \theta\}$, (ii) $\{r, p_r\}$, (iii) $\{r, p_{\theta}\}$, (iv) $\{\theta, p_{\theta}\}$, (v) $\{\theta, p_r\}$ and (vi) $\{p_r, p_{\theta}\}$.
- (f) $\langle 1 \rangle$ Comment on the result.