Classical Mechanics 2, Spring 2014 CMI

Problem set 6 Due by the beginning of lecture on Monday Feb 3, 2014 Hamiltonian from Lagrangian by Legendre transform

- 1. $\langle \mathbf{4} \rangle$ The first law of thermodynamics says that the change in internal energy of a gas is equal to the heat supplied to the gas minus the work done by the gas. For infinitesimal reversible changes, dU = TdS PdV. Here dU is the increase in internal energy, P the pressure, dV the increase in volume dS the increase in entropy and T the absolute temperature.
 - (a) $\langle 1 \rangle$ What are the independent variables that U depends on?
 - (b) $\langle 1 \rangle$ Helmholtz free energy may be introduced via the formula F = U TS. Find the independent variables that F depends on.
 - (c) $\langle 1 \rangle$ Express the pressure and entropy in terms of the Helmholtz free energy.
 - (d) (1) Write a formula for Helmholtz free energy as a Legendre transform of the internal energy. Indicate which variable to extremize in and give the condition for an extremum.
- 2. $\langle 7 \rangle$ Find a smooth convex function L(v) of a real variable v whose Legendre transform $H(p) = \exp_v(pv L(v))$ is the same function as L. In other words, H(x) = L(x) for any $x \in \mathbb{R}$. You may first try to guess such a function using physical knowledge. But you must also formulate the above condition as an equation and try to solve it to determine such a function. Give a physical interpretation of the resulting function H(p).