Classical Mechanics 2, Spring 2014 CMI

Problem set 5 Due by the beginning of lecture on Wednesday Jan 29, 2014 A pitfall in obtaining the Hamiltonian from Lagrangian

- 1. Suppose the kinetic energy and Lagrangian of a system is given by $L(q, \dot{q}) = T = \frac{1}{4}\dot{q}^4 \frac{1}{2}\dot{q}^2$.
 - (a) $\langle \mathbf{1} \rangle$ Plot T as a function of velocity.
 - (b) $\langle \mathbf{1} \rangle$ Find the momentum p conjugate to q.
 - (c) $\langle \mathbf{1} \rangle$ Plot *p* as a function of \dot{q} .
 - (d) $\langle 3 \rangle$ To go from Lagrangian to Hamiltonian we need to express the velocity in terms of momentum. Re-draw the previous graph of p versus \dot{q} . Argue from the graph and indicate on the graph whether and where one may solve for the velocity in terms of a given momentum uniquely/non-uniquely. Explicit formula for \dot{q} as a function of p is not required.
 - (e) $\langle 3 \rangle$ Does $H = p\dot{q} L$ with $p = \frac{\partial L}{\partial \dot{q}}$ define the hamiltonian as a single-valued function of position and momentum on phase space? Where do we run into trouble?