Classical Mechanics 2, Spring 2014 CMI

Problem set 5
Due by the beginning of lecture on Wednesday Jan 29, 2014
A pitfall in obtaining the Hamiltonian from Lagrangian

1. Suppose the kinetic energy and Lagrangian of a system is given by $L(q, \dot{q})=T=\frac{1}{4} \dot{q}^{4}-\frac{1}{2} \dot{q}^{2}$.
(a) $\langle\mathbf{1}\rangle$ Plot T as a function of velocity.
(b) $\langle\mathbf{1}\rangle$ Find the momentum p conjugate to q.
(c) $\langle\mathbf{1}\rangle$ Plot p as a function of \dot{q}.
(d) $\langle\mathbf{3}\rangle$ To go from Lagrangian to Hamiltonian we need to express the velocity in terms of momentum. Re-draw the previous graph of p versus \dot{q}. Argue from the graph and indicate on the graph whether and where one may solve for the velocity in terms of a given momentum uniquely/non-uniquely. Explicit formula for \dot{q} as a function of p is not required.
(e) $\langle\boldsymbol{3}\rangle$ Does $H=p \dot{q}-L$ with $p=\frac{\partial L}{\partial \dot{q}}$ define the hamiltonian as a single-valued function of position and momentum on phase space? Where do we run into trouble?
