Classical Mechanics 2, Spring 2014 CMI Problem set 4 Due by the beginning of lecture on Monday Jan 27, 2014 Harmonic oscillator and action principle

- 1. $\langle \mathbf{5} \rangle$ Recall that the general solution of $\ddot{x} = -\omega^2 x$ is $x(t) = a \cos \omega t + b \sin \omega t$ where a, b are constants of integration. Find the unique classical trajectory connecting $x(t_i) = x_i$ and $x(t_f) = x_f$ assuming $\omega \Delta t \neq n\pi$ for any integer n. Here $\Delta t = t_f t_i$. You may use the abbreviations $c_i = \cos \omega t_i$, $s_f = \sin \omega t_f$ etc.
- 2. $\langle 17 \rangle$ Consider a particle of mass *m* in the potential $V(x) = \frac{1}{2}m\omega^2 x^2$. Suppose x(t) is a trajectory between $x_i(t_i)$ and $x_f(t_f)$ and let $x(t) + \delta x(t)$ be a neighboring path with $\delta x(t_i) = \delta x(t_f) = 0$.
 - (a) $\langle 5 \rangle$ Write the classical action of the path $x + \delta x$ as a quadratic Taylor polynomial in δx . Show that you get the following expression. What can you say about S_1 ?

$$S[x+\delta x] = S_0 + S_1 + S_2 = S[x] - \int_{t_i}^{t_f} (m\ddot{x}+m\omega^2 x)\,\delta x\,dt + \int_{t_i}^{t_f} \left[\frac{1}{2}m(\delta\dot{x})^2 - \frac{1}{2}m\omega^2(\delta x)^2\right]dt$$

(b) $\langle 2 \rangle$ For what values of κ is $x(t) + \delta x(t)$ a legitimate neighboring path for the variation

$$\delta x(t) = \epsilon \sin \kappa (t - t_i) ? \tag{1}$$

- (c) $\langle \mathbf{3} \rangle$ Evaluate $S_2[\delta x]$ for all the allowed values of κ .
- (d) $\langle 3 \rangle$ Take $\Delta t = t_f t_i = 10$ s and $\omega = 1$ Hz. Find a path that can be made arbitrarily close to the trajectory x(t), whose action is *less* than that of x(t).
- (e) $\langle 3 \rangle$ Take $\Delta t = t_f t_i = 10$ s and $\omega = 1$ Hz. Find a path that can be made arbitrarily close to the trajectory x(t), whose action is *more* than that of x(t).
- (f) $\langle 1 \rangle$ What sort of an extremum of action is the classical trajectory?