Classical Mechanics 2, Spring 2014 CMI

Problem set 14 Due by 10am on Tuesday Apr 15, 2014 Rotation matrices and axis of rotation

1. $\langle 8 \rangle$ Consider the 2D rotation matrix $R = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}$ where $s = \sin \theta$ and $c = \cos \theta$.

- (a) $\langle 2 \rangle$ Find the eigenvalues λ_{\pm} of *R*.
- (b) $\langle 4 \rangle$ Find the corresponding unit norm eigenvectors v_{\pm} . In what sense are they orthogonal?
- (c) $\langle 2 \rangle$ All points on an axis of rotation must be left unchanged by the rotation. Assuming *R* is a non-trivial rotation $\theta \neq 0$, try to find a vector in \mathbb{R}^2 that qualifies as an axis of rotation¹.

2. $\langle \mathbf{4} \rangle$ Now consider a rotation of 3D space of the form $R = \begin{pmatrix} c & -s & 0 \\ s & c & 0 \\ 0 & 0 & 1 \end{pmatrix}$ where *s*, *c* are as above.

Find the eigenvalues and corresponding eigenvectors. Give an axis of rotation and specify the angle and sense of rotation.

- 3. $\langle 12 \rangle$ More generally, suppose $R \in SO(3)$ is a rotation matrix, i.e., $R^t R = I$ and det R = 1.
 - (a) $\langle 4 \rangle$ Show that every such rotation matrix R must have at least one one real eigenvalue and that non-real eigenvalues must come in complex-conjugate pairs.
 - (b) $\langle 2 \rangle$ Show that if a rotation has 3 real eigenvalues $\{\lambda, \mu, \nu\}$, then the set of eigenvalues must be either $\{1, 1, 1\}$ or $\{1, -1, -1\}$. Hint: In its eigenbasis, *R* is diagonal with entries $\{\lambda, \mu, \nu\}$.
 - (c) (3) What sort of rotations do the two cases in the previous question correspond to? Mention in words an axis and angle of rotation in each case.
 - (d) $\langle 3 \rangle$ Assuming that *R* does not have 3 real eigenvalues, show that it has precisely one real eigenvalue and find it. Hint: The condition $R^t R = I$ will in general *not* hold in its eigenbasis since it involves a *complex* change of basis. However, the condition $R^{\dagger}R = I$ where $R^{\dagger} = (R^t)^*$ is the complex conjugate transpose holds in any basis as does det R = 1. The eigenvector corresponding to the real eigenvalue may be taken as the axis of rotation.

¹If R = I is the identity, then any non-zero vector in \mathbb{R}^2 qualifies as an axis of rotation with zero angle of rotation.