Classical Mechanics 2, Spring 2014 CMI

Problem set 11
Due by the beginning of lecture on Monday Mar 24, 2014
Inertia tensor.

1. $\langle\mathbf{1 8}\rangle$ Consider a uniform square plate of side L and total mass M.
(a) $\langle\mathbf{3}\rangle$ Select a convenient right-handed orthonormal coordinate system and draw a diagram of the plate and the coordinate axes.
(b) $\langle\mathbf{1}\rangle$ Where is the center of mass located? What are its coordinates in the chosen system of coordinates?
(c) $\langle\mathbf{8}\rangle$ Find all the matrix elements of the inertia matrix in a suitable basis with origin at the center of mass. Exploit the symmetries of the mass distribution on the plate to simplify the calculation.
(d) $\langle\mathbf{3}\rangle$ Find the principal moments of inertia of the plate and check whether they satisfy/saturate the triangle inequalities.
(e) $\langle\mathbf{2}\rangle$ Find the corresponding principal axes of inertia, are they uniquely determined? Clarify.
(f) $\langle\mathbf{1}\rangle$ Is the square plate a symmetric top? Why?
2. $\langle\mathbf{1 3}\rangle$ Now consider a uniform solid cube of side L and mass M.
(a) $\langle\mathbf{3}\rangle$ Choose a convenient coordinate system with origin at the center of mass and draw a figure of the cube and coordinate axes.
(b) $\langle\mathbf{8}\rangle$ Find the matrix elements of the inertia matrix in a suitable basis.
(c) $\langle\mathbf{2}\rangle$ Find the principal moments of inertia of the cube and establish whether it is a spherical top.
