Classical Mechanics 2, Spring 2014 CMI

Problem set 11 Due by the beginning of lecture on Monday Mar 24, 2014 Inertia tensor.

- 1. $\langle 18 \rangle$ Consider a uniform square plate of side L and total mass M.
 - (a) (3) Select a convenient right-handed orthonormal coordinate system and draw a diagram of the plate and the coordinate axes.
 - (b) (1) Where is the center of mass located? What are its coordinates in the chosen system of coordinates?
 - (c) $\langle 8 \rangle$ Find all the matrix elements of the inertia matrix in a suitable basis with origin at the center of mass. Exploit the symmetries of the mass distribution on the plate to simplify the calculation.
 - (d) (3) Find the principal moments of inertia of the plate and check whether they satisfy/saturate the triangle inequalities.
 - (e) $\langle 2 \rangle$ Find the corresponding principal axes of inertia, are they uniquely determined? Clarify.
 - (f) $\langle 1 \rangle$ Is the square plate a symmetric top? Why?
- 2. $\langle 13 \rangle$ Now consider a uniform solid cube of side L and mass M.
 - (a) $\langle 3 \rangle$ Choose a convenient coordinate system with origin at the center of mass and draw a figure of the cube and coordinate axes.
 - (b) $\langle 8 \rangle$ Find the matrix elements of the inertia matrix in a suitable basis.
 - (c) (2) Find the principal moments of inertia of the cube and establish whether it is a spherical top.