Classical Mechanics 2, Spring 2014 CMI

Problem set 10 Due by the beginning of lecture on Monday Mar 17, 2014 Generating functions for finite canonical transformations.

- 1. $\langle 12 \rangle$ We seek a generator of type $F_3(p, Q, t)$ for a finite canonical transformation from old to new canonical variables and hamiltonian $(q, p; H) \rightarrow (Q, P; K)$.
 - (a) $\langle 5 \rangle$ Staring from appropriate action principles for Hamilton's equations in the old and new variables, express the equations of transformation in terms of F_3 , i.e., find q, P, K in terms of F_3
 - (b) $\langle \mathbf{4} \rangle$ By comparing the relations among differentials for F_1 and F_3 , express F_3 as a Legendre transform of $F_1(q, Q)$
 - (c) $\langle 3 \rangle$ Find a generating function of type $F_3(p, Q)$ that generates the scaling CT $Q = \lambda q P = p/\lambda$.
- 2. $\langle 12 \rangle$ Consider the finite canonical transformation, corresponding to a rotation of the phase plane

$$Q = cq - sp$$
 and $P = sq + cp$ where $s = \sin \theta$ and $c = \cos \theta$. (1)

- (a) $\langle 2 \rangle$ We seek a generating function of type-II W(q, P) for the above finite CT. Find the differential equations that W(q, P) must satisfy to ensure it generates the above CT.
- (b) ⟨5⟩ Integrate the differential equations and give a simple formula for the generating function W(q, P).
- (c) $\langle 1 \rangle$ Verify that your proposed function W(q, P) indeed generates the above finite rotation.
- (d) $\langle 2 \rangle$ Find a generating function of type $F_1(q, Q)$ that generates the same finite rotation via an appropriate Legendre transform from W(q, P). This provides an example of a CT that admits a generator of both type I and II.
- (e) $\langle 2 \rangle$ Try to find a generator of type I for the identity CT, by letting the angle of rotation go to zero. What do you find?