Classical Mechanics 1, Autumn 2025 CMI

Assignment 7
Due by 6pm, 25 Oct, 2025
Simple plane pendulum

- 1. $\langle \mathbf{9} \rangle$ Simple pendulum: angular momentum and torque. Consider a simple pendulum with bob of mass m and rod of length ℓ subject to Earth's acceleration due to gravity with magnitude g. Denote the counterclockwise deflection angle θ and use the coordinate frame developed in the lecture.
 - (a) $\langle \mathbf{3} \rangle$ Find an expression (in terms of θ) for the torque $\boldsymbol{\tau} = \boldsymbol{r} \times \boldsymbol{F}$ on the bob about the pivot. Which forces do/do not contribute to $\boldsymbol{\tau}$?
 - (b) $\langle \mathbf{1} \rangle$ Write an expression (in terms of θ) for the angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ of the bob about the pivot.
 - (c) $\langle \mathbf{2} \rangle$ Use the evolution equation for angular momentum to derive a differential equation for $\theta(t)$. How does it compare with the EOM for θ derived from Newton's second law?
 - (d) $\langle \mathbf{3} \rangle$ Propose a limit holding m, ℓ, g fixed in which the angular momentum is asymptotically conserved. Specify the limit through a suitable comparison of physical quantities. Comment on the nature of motion in this limit.
- 2. $\langle \mathbf{11} \rangle$ Linearization of pendulum equation. Linearize the equation of motion $\ddot{\theta} = -\omega^2 \sin \theta$ for a simple pendulum around $\theta = \pi$. Here $\omega = \sqrt{g/\ell}$.
 - (a) $\langle \mathbf{2} \rangle$ Find the approximate linear equation satisfied by $\phi = \theta \pi$.
 - (b) $\langle \mathbf{4} \rangle$ Use a suitable guess to find two linearly independent solutions of the equation for ϕ and the general solution of the equation for given $\phi(0)$ and $\dot{\phi}(0)$.
 - (c) $\langle \mathbf{2} \rangle$ Physically interpret the consequences of the solution of the linear differential equation for ϕ for typical (nonexceptional) initial conditions and comment on what it means for the stability of the static solution $\theta = \pi$.
 - (d) $\langle 3 \rangle$ Comment on any exceptional ICs and the resulting time evolution.