Classical Mechanics 1, Autumn 2025 CMI $\begin{array}{c} {\rm Assignment} \ 4 \\ {\rm Due} \ {\rm by} \ 6 {\rm pm}, \ {\rm Mon} \ 8 \ {\rm Sep}, \ 2025 \\ {\rm inertial} \ {\rm frames}, \ {\rm degrees} \ {\rm of} \ {\rm freedom}, \ {\rm Newton's} \ {\rm laws} \end{array}$ - 1. $\langle \mathbf{3} + \mathbf{3} \rangle$ Events and simultaneity. (a) Suppose events A and B occur at the same location r_0 but at distinct times $t_A < t_B$, as observed in an inertial frame K. Do they occur at the same location in all other inertial frames? Explain why/why not. (b) Suppose events A and B occur simultaneously a distance d apart as observed in an inertial frame K. Do A and B occur simultaneously a distance d apart in all other inertial frames of reference? Explain why/why not. - 2. $\langle \mathbf{5} \rangle$ **Degrees of freedom.** Consider an idealized straight rigid wire of zero thickness and fixed length ℓ (essentially a line segment) that is free to move in a room. How many degrees of freedom does this system possess? Explain by enumerating the degrees of freedom. - 3. $\langle 3 \rangle$ Acceleration without a force. A particle is not subject to any force but observer A finds that it executes accelerated motion with respect to A's frame of reference. On the basis of Newton's 1st law, explain whether A's frame is inertial or not. - 4. $\langle 2+2 \rangle$ Force without acceleration. Suppose a particle is known to be subject to a net force but an observer finds that it does not move. (a) Based on Newton's 1st law, what can be deduced about whether the observer's frame is inertial or noninertial? (b) What can be said using Newton's 2nd law?