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1 Primer on vectors, polar coordinates and kinematics

1.1 Vectors, dot and cross product

• Vectors provide a convenient way of writing the equations of physics
in compact form. Newton’s 2nd law Fx = max, Fy = may, Fz = maz
becomes the single equation of motion F = ma where F = (Fx, Fy, Fz)
and a = (ax, ay, az) are ordered triples.

• Vectors also make it easier to understand structural features (behavior
under rotations or other transformations which could be symmetries) of
physical quantities and equations. They allow us to exploit tools from
linear algebra and geometry.

• A nonzero vector v in 3d Euclidean space is a directed line segment
emanating from a chosen origin. It has a magnitude or length or norm
denoted |v| = v (which is a positive real number determined using a mea-
suring scale) and a direction (which is specified with respect to the origin
and relative to other objects). Additionally there is an exceptional vector
called the zero vector 0, which has zero length. It is convenient to think
of the zero vector as pointing in all directions!

• Examples of vectors are the velocity and acceleration of a particle, the
force acting on it, the electric field at a point in space etc.

• The multiplication of a vector v by the real number α (also called a
real scalar) denoted αv is a vector in the same or opposite direction as v
(according as α ≥ 0 or α ≤ 0) that has the length |α||v|. For example
−1

2v is a vector of half the length that points in the direction opposite to
v . Moreover, 0v = 0 is the zero vector.

• A unit vector is one with unit length. Given a nonzero vector a, the
associated unit vector â is obtained by ‘normalization’, i.e., dividing it by
its length: â = a

|a| . Conversely, a = aâ. For a unit vector |â| = 1.

• The sum of the vectors a and b is the vector that points (from the
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common origin) along the diagonal of the parallelogram with adjacent sides
a and b.

• Evidently, the order does not matter: a + b = b + a. We say that
addition of vectors is commutative or an abelian operation.

• The zero vector has the special property that 0 + v = v for any vector
v . We say that 0 is the additive identity. Moreover 1v = v for any vector,
so 1 is the multiplicative identity.

• The zero vector 0 is not the same as the real number 0. The former lies
at the chosen origin of 3d space while the latter is a point on the real line.
They live in different spaces.

• The set of all vectors in 3d space (with a fixed origin) equipped with
the operations of addition of vectors and multiplication of vectors by real
numbers is called a 3d real vector space and denoted R3 .

• The space of vectors on the 2d Euclidean plane with a chosen origin
forms the 2d real vector space denoted R2 .

Dot or scalar product. Geometry has to do with angles, lengths, notions
of parallel and perpendicular etc. Geometry enters through the dot product
of vectors. For two vectors in 3d space, we define their dot product as
a · b = ab cos θ where θ is the angle between the vectors. It does not
matter whether we measure θ from a to b or vice versa.

• Notice that a · b = b · a, so the dot product is commutative.

• Turning things around, the angle between vectors can be expressed in
terms of the dot product θ = arccos(a·bab ).

• As a consequence of the definition, a · a = a2 . Thus the length of a
vector can also be expressed in terms of the dot product.

• The dot product is also called the scalar product since the result is a
real number (scalar) and not a vector.
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• Show the law of cosines for c = a+ b:

c2 = a2 + b2 + 2ab cos θ. (1)

• Two vectors are orthogonal or perpendicular if a · b = 0.

• Component of b in the direction of a Note that b cos θ = b ·a/a =
b · â is the component of b in the direction of a. The component is just a
real number, it can be positive or negative or even zero. It does not depend
on the length of a.

• The vector Pâb = b cos θâ is called the orthogonal projection of b on a.
It is a vector that points in the direction of â or −â and has a magnitude
|b cos θ| equal to the absolute value of the component of b along â.

• Similarly, a · b̂ is the component of a in the direction of b.

• The norm ||v|| of a vector v is defined as ||v|| =
√
v · v . It is also called

the Euclidean norm. The norm is the length of the vector, it is ≥ 0. The
zero vector is the only one with zero norm.

• Work as a scalar product. Suppose a force F acts on a particle and
displaces it from position vector a to an infinitesimally nearby position
vector b. The resulting infinitesimal displacement vector is ds = b − a.
Then the infinitesimal work done by the force is the scalar product dW =
F · ds.

• Vector or cross product. The vector or cross product a×b is a vector
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with magnitude ab sin θ ≥ 0 where 0 ≤ θ ≤ π is the angle between the
vectors. Its direction is determined by the right hand thumb rule. If the
fingers of the right hand curl from a to b then the cross product points in
the direction of the thumb. [Another rule that gives the same direction is
called the screw rule.]

• In particular, a × b points in a direction perpendicular to both a and
b. Moreover, a×b = −b×a is antisymmetric and so a×a = 0 (the zero
vector). Thus, the cross product is not commutative in general.

• The torque due to a force F on a particle located at the position vector
r relative to a given origin is the cross product τ = r × F .

• How might a force point so that it imparts no torque on the particle?

• The magnitude of the area of a parallelogram spanned by the vectors a
and b is equal to |a×b| = |b×a|. Sometimes it is useful to view the area
as a vector: the area vector of the parallelogram spanned by a and b is
a× b.

• Linear combination. Given vectors u and v , αu+βv where α, β are
real numbers is called a linear combination.

• Linear dependence. Two vectors u,v are linearly dependent if one
can be expressed as a multiple of the other, i.e., if they point in the same
or opposite directions. In other words, u = αv or v = βu for some
real numbers α and β . So when they are dependent, there is a linear
combination u− αv or v − βu that vanishes. We need to allow for both
possibilities. For instance if u = 0v and v 6= 0 then β is formally infinite
and we do not have a relation of the sort v = βu. In summary, u and v
are linearly dependent if there are real numbers a, b (not both zero) such
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that au+ bv = 0.

• u and v are said to be linearly independent if they point in different
directions (i.e., are neither parallel not antiparallel.).

• Show that u and v are linearly independent if and only if u×v 6= 0. In
other words, two vectors are linearly independent if the parallelogram they
span has nonzero area. This idea can be generalized to 3d. 3 vectors in R3

are linearly independent if the volume of the parallelepiped they define is
nonzero.

• The zero vector 0 and any other vector u are always linearly dependent,
since 0 = 0u.

• Linear independence. Vectors v1,v2,v3, · · · are said to be linearly
independent if the only linear combination c1v1 + c2v2 + c3v3 + · · · that
vanishes is the one where c1 = c2 = c3 = · · · = 0. In other words, the only
linear combination that vanishes, is the trivial one.

• In R3 we can have at most three linearly independent vectors.

• Cartesian axes are any choice of mutually perpendicular axes x, y, z
in R3 .

• Cartesian orthonormal frame. We denote the unit vectors along the
Cartesian axes by x̂, ŷ and ẑ or î, ĵ and k̂ . They are orthonormal in the
sense that they each have unit norm and are mutually perpendicular:

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1 and x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0. (2)

The (x̂, ŷ, ẑ) frame is called right-handed if x̂× ŷ = ẑ (rather than −ẑ , in
which case it is left-handed). What are ŷ × ẑ and ẑ × x̂? We will work
with right-handed frames.

7



• x̂, ŷ and ẑ form a basis for R3 in the sense that they are linearly inde-
pendent and any vector can be written (uniquely) as a linear combination
of them:

a = axx̂+ ayŷ + azẑ. (3)

The three real numbers ax, ay and az are the components of a along the
three coordinate frame vectors, verify that

ax = a · x̂, ay = a · ŷ and az = a · ẑ. (4)

• Notice that axx̂ = Px̂a is the projection of a along x̂. We say that the
vector a has been resolved into its components and written as a sum of its
orthogonal projections along the orthonormal basis vectors.

• In fact, (ax, ay, az) are the Cartesian coordinates of the location of the
tip of the vector a.

• Verify that the dot product of a = axx̂+ayŷ+azẑ and b = bxx̂+byŷ+bzẑ
is a · b = axbx + ayby + azbz .

• Express the Cartesian components of the cross product a × b in terms
of those of a and b.

1.2 Position coordinates and velocity and acceleration vectors

• The instantaneous location of a particle moving in 3d Euclidean space
may be specified by its Cartesian coordinates (x(t), y(t), z(t)). As the par-
ticle moves, it traces out a curve parametrized by time, called its trajectory.
It is a directed curve, the direction being that of increasing time.
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• The instantaneous location of a particle is the same no matter which
coordinate system we use to describe it. The latter is simply a convenient
way of specifying its ‘address’. The coordinates x, y, z depend on the
choice of origin and orientation of coordinate axes. If we change the origin
of our coordinates or orientation of the axes, we will get a different set of
coordinates to describe the location of the particle at a given time. Two
people following different coordinate systems will nevertheless meet each
other at the common instantaneous location of the particle. [For instance,
a courier delivers a letter to the same geographic location irrespective of
whether the address on the envelope says CMI, Old number 2, 2nd Avenue
or CMI, New number 5, 2nd Avenue].

• The vector that points from the origin of Cartesian coordinates to the
instantaneous position of the particle, has components (x(t), y(t), z(t)). It
is called the position vector and is denoted r(t). While such a designation
is convenient for some purposes, it is important to bear in mind that the
location of a particle is not really a vector: it is not physically associated to
a direction and the location of the particle does not come with any intrinsic
notion of an origin or a length.

• The infinitesimal displacement of a particle over a time [t, t + δt] does
define a vector, albeit a vector with infinitesimal length:

δr(t) = r(t+ δt)− r(t). (5)

The concept of infinitesimal displacement defines an origin, namely the
initial location of the particle (at time t). The infinitesimal displacement
vector then points from this origin to the final location of the particle (at
time t+ δt).

• The concept of infinitesimal displacement does not define a coordinate
frame, it only defines an origin and a vector δr . We may resolve δr along
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the axes of any frame. Here, we will parallel transport δr to the origin of
our Cartesian coordinate frame, its components with respect to this frame
are

δr(t) = r(t+δt)−r(t) = (x(t+δt)−x(t), y(t+δt)−y(t), z(t+δt)−z(t)) (6)

• The arbitrarily chosen origin of the Cartesian coordinate system (x, y, z)
has no physical relevance to the infinitesimal displacement vector. We have
parallel transported it to this origin for ease of some later calculations.

• The velocity of the particle is defined as the limiting value of the differ-
ence quotient

v(t) = lim
δt→0

δr(t)

δt
. (7)

• The velocity of the particle is a vector. It is the time derivative of the
position along the trajectory. The velocity

v(t) =
dr(t)

dt
(8)

defines a vector that points from the instantaneous location in the direction
of motion. It is a tangent vector to the trajectory. Its magnitude is called
the instantaneous speed of the particle.

• The origin from which the velocity vector points moves with the particle.

• For many purposes, it is convenient to resolve v along the Cartesian
coordinate axes by moving the origin of the Cartesian frame to the cur-
rent location of the particle. With this understanding, and denoting time
derivatives with an over-dot,

v(t) = (ẋ(t), ẏ(t), ż(t)) = ẋx̂+ ẏŷ + żẑ (9)

• The time-derivative of the velocity is the acceleration, which may be
viewed as the vector

a(t) = ẍ(t)x̂+ ÿ(t)ŷ + z̈(t)ẑ. (10)
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It is the limit of the difference quotient (v(t+ ∆t)− v(t))/∆t as ∆t→ 0.
It may be regarded as a vector emanating from the instantaneous location
of the particle.

1.3 Uniform circular motion

Suppose a particle moves counterclockwise on the circle x2 + y2 = `2 of
radius ` in the x-y plane at a constant angular speed ω > 0 radians per
second. Assuming it starts from the point (`, 0) at t = 0, its instantaneous
location may be given by the Cartesian coordinates

x(t) = ` cosωt and y(t) = ` sinωt. (11)

Sometimes, it is convenient to regard r(t) = ` cosωtx̂+` sinωtŷ as a vector
that points radially outwards from the center of the circle. Thus r(t) is
the position vector of the particle relative to the origin chosen to lie at the
center of the circle.

• Let us see why this formula is justified. Notice that x2 + y2 = `2 at
all times and that the motion is counterclockwise. The velocity vector is
given by

v(t) = −`ω sinωt x̂+ `ω cosωt ŷ. (12)

The speed of the particle v = |v(t)| =
√
v · v = `ω is constant ensuring

uniform circular motion. The particle goes round the circle once in a time
T = 2π`/v = 2π/ω . Thus, the particle covers 2π radians in a time 2π/ω
resulting in an angular speed of ω radians per second (angular speed is
sometimes called angular frequency).

• Notice that v · r = 0. Thus, the velocity vector is tangent to the circle.
The acceleration is given by

a(t) = v̇(t) = −`ω2 cosωtx̂− `ω2 sinωtŷ = −ω2r(t). (13)

We see that the acceleration has the constant magnitude |a(t)| = `ω2 and
points radially inwards towards the center of the circle. The latter feature
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justifies the name centripetal acceleration. Centripetal means ‘seeking the
center’ in Latin.

• The time derivative of acceleration ȧ is sometimes called jerk or jolt.
Show that ȧ · a = 0. Which way does the jerk point in uniform circular
motion?

• We observe that if there is a radially inward force F (like a person
tugging at a string with a stone tied at the other end and rotated) that
is responsible for this circular motion, then F · ds = 0. Here ds is the
infinitesimal displacement of the particle, which is tangent to the circle.
This dot product is called the infinitesimal work done by the force in dis-
placing the particle ds. Thus we see that a radially inward force does no
work in moving a particle along a circular trajectory. This is not the case
if the motion is due to a force that is tangential - like an agent pushing the
particle along the rim of the circle.

1.4 Nonuniform circular motion

• We may model nonuniform circular motion of a particle around a circle
of radius ` via the position vector

r(t) = `(cos θ(t), sin θ(t)) = `(cos θ(t)x̂+ sin θ(t)ŷ). (14)

If we denote ω(t) = θ̇ , then the angular speed of such a particle is |ω(t)| =
|θ̇|, which we suppose is not constant.

• The velocity of such a particle is

v(t) = `θ̇(− sin θ(t), cos θ(t)). (15)

Notice that v · r = 0. So v always points tangent to the circle as it must
for a particle confined to the circle. However, the linear speed `|θ̇| may
vary with time.
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• Using the product rule of differentiation, the acceleration is given by

a = v̇ = `θ̈(− sin θ, cos θ)− `θ̇2(cos θ, sin θ). (16)

The first term points tangentially (counterclockwise or clockwise depending
on the sign of θ̈), and is called the angular acceleration while the second
term points radially inwards and is called the centripetal acceleration. Thus
a · v 6= 0 in general for nonuniform circular motion.

1.5 Rotating vectors

• We observed that the velocity of a uniformly rotating particle is orthog-
onal to its radius vector, i.e., the time derivative of the position vector r
is perpendicular to r : r · (dr/dt) = r · v = 0. In fact, this is true even if
the rotation is not uniform. Let us comment on the significance of this.

• Suppose A is any vector such that its time derivative is orthogonal
to A at all times. Then the infinitesimal change in A in a short time
is perpendicular to A and not along A. This means the magnitude of
A cannot change (it cannot shrink or elongate), and the vector can only
rotate. Let us obtain a formula for |dA/dt|. Suppose ∆A = A(t+ ∆t)−
A(t) is the infinitesimal change in A. Since the length of A does not
change, the three vectors A(t), A(t + ∆t) and ∆A form an isosceles
triangle with ∆A as base. Let us denote the angle at the apex of this
isosceles triangle by ∆θ , which is the angle of rotation.

• Then

|∆A| = |2A sin(∆θ/2)| ≈ A|∆θ| for small ∆θ. (17)

We have used the linear Taylor approximation for the sine function (more
on this soon). Taking the limit ∆t→ 0,∣∣∣∣dAdt

∣∣∣∣ = A

∣∣∣∣dθdt
∣∣∣∣ . (18)
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Here, |dθ/dt| is the angular speed of A.

• We may apply this to circular motion where A = r is the radius vector
of the particle and dA/dt = v is its velocity. Then the linear speed of the
particle is v = r|ω| where ω = dθ/dt is the angular speed (positive for
counterclockwise motion). Note that v, ω need not be constant. Uniform
circular motion is a special case where ω is a constant and

r = r(cosωt x̂+ sinωt ŷ) and v = rω(− sinωt x̂+ cosωt ŷ) (19)

Notice that v · r = 0 since v points tangentially/azimuthally while r is
radial. This ensures that the length of r does not change with time. What
is more, we showed that the acceleration a = v̇ = −ω2r so that v̇ is
perpendicular to v for uniform circular motion. Thus, the velocity vector
cannot change in magnitude and must also simply rotate! Verify that the
same is true of a as well, for uniform circular motion.

1.6 Integration of kinematical equations

As we will soon learn, if the forces on a particle are known, then one
may use Newton’s second law to find its acceleration. This is called the
dynamical part of the problem of motion, since it depends on the forces and
interactions. The kinematical part of the problem of motion is to determine
the velocity of the particle and its trajectory from its acceleration.

• Suppose we are given the acceleration of a particle as a function of time.
Then the velocity must satisfy dv

dt = a(t). This is a first order differential
equation since it only involves the first derivative. The independent vari-
able is t and the vector v(t) is called the unknown or dependent variable.
Integrating this equation with respect to time from t0 to t, we get

v(t) = v(t0) +

∫ t

t0

a(t′)dt′. (20)

In addition to knowledge of the acceleration, here we needed an ‘initial
condition’ v(t0) (actually three ICs, the three Cartesian components of
v(t0)) to determine the velocity. The problem of determining velocity has
been reduced to quadratures i.e., to evaluating integrals (one each for the
three Cartesian components of velocity).
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• The step from velocity to position involves one more integration and
another initial condition:

ṙ(t) = v(t) ⇒ r(t) = r(t0) +

∫ t

t0

v(t′)dt′. (21)

Evaluating these integrals for a specific acceleration may or may not be
feasible analytically.

• We have solved the 2nd order ordinary differential equations r̈(t) = a(t)
in two steps. Being 2nd order, the process required two initial conditions
or pieces of initial data v(t0) and r(t0) (each of which is a vector with
three components).

• A simple example is that of uniform acceleration, i.e., where a(t) is a
constant vector a. In this case,

v(t) = v(t0) + (t− t0)a, (22)

and integrating once more,

r(t) = r(t0) + (t− t0)v(t0) +
1

2
(t2 − t20)a− (t− t0)t0a. (23)

The formula simplifies if t0 = 0:

r(t) = r(0) + tv(0) +
1

2
t2a (24)

This formula applies to the case of constant acceleration.

1.7 Plane polar coordinates

• For many problems, especially those where there is rotational symme-
try around a central object, polar coordinates are more convenient than
Cartesian coordinates.

• For simplicity, we consider polar coordinates (r, θ) on the plane. Sup-
pose we are given an origin O and horizontal and vertical x and y axes.
Given a point P (x, y), r is the distance of P from the origin, and θ is
the counterclockwise angle the radius vector r = (x, y) makes with the
horizontal axis. Note that x and y are called the abscissa and ordinate of
the point P . In other words, cos θ = x/r or tan θ = y/x. Thus,

r =
√
x2 + y2 and θ = arctan(y/x) = arccos(x/r). (25)
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Conversely,
x = r cos θ and y = r sin θ. (26)

• Notice that θ is defined modulo 2π . θ = 0 and θ = 2π both corre-
spond to the positive x-axis. One often chooses a convenient ‘fundamental
domain’ for θ such as [0, 2π) or (−π, π].

�It is important to observe that the polar coordinate system breaks down
(or is singular) at the origin where x = y = r = 0. At this point, θ is
not defined. In a sense, the point at the origin could be assigned any value
of θ , depending on how we approach the origin. Said differently, the map
between x, y and r, θ fails to be 1-1 at the origin.

• Notice that the constant x and constant y curves (also known as the
level curves1 of x and y) are mutually orthogonal straight lines parallel to
the y and x axes respectively. By contrast, the constant θ curves are rays
emanating radially outwards from the origin while the constant r curves are
concentric circles centered at O . This explains why polar coordinates are
called curvilinear coordinates. Despite being curvilinear, the level curves
of r and θ are mutually orthogonal.

• A real-valued function on the plane is any function of x and y that
assigns a real number to each point (x, y). The simplest of these functions
are the ‘coordinate functions’ x and y themselves.

• Analogously, r and θ are the coordinate functions in polar coordinates.

• Unit vectors r̂ and θ̂ . Recall that at a point (x, y) on the plane, x̂ and
ŷ are unit vectors in the directions of increasing x holding y fixed and vice
versa. Similarly, we define the unit vectors r̂ and θ̂ at any point (r, θ).
r̂ points radially outwards while θ̂ points counterclockwise tangentially
to the circle of radius r . The direction in which θ̂ points is called the
azimuthal direction.

1A level curve of a quantity is a curve on which the quantity is a constant.
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• x̂, ŷ furnish one basis for vectors at any point on the plane. Similarly,
r̂, θ̂ furnish another basis at points away from r = 0. We can therefore
expand r̂ and θ̂ in the x̂, ŷ basis at any point.

• A figure shows that we may decompose r̂ and θ̂ as

r̂ = cos θ x̂+ sin θ ŷ =
x

r
x̂+

y

r
ŷ

and θ̂ = − sin θ x̂+ cos θ ŷ = −y
r
x̂+

x

r
ŷ. (27)

In fact, the figure shows that the r̂ − θ̂ frame is obtained from the x̂ − ŷ
frame through a rotation by angle θ counterclockwise.

• Check that r̂ and θ̂ are orthonormal:

r̂ · θ̂ = 0 and r̂ · r̂ = θ̂ · θ̂ = 1. (28)

• Exercise: Express x̂ and ŷ as linear combinations of r̂ and θ̂ .

• Unlike x̂ and ŷ which point in the same direction everywhere, the direc-
tions of r̂ and θ̂ change with location.

• Position coordinate and velocity vector. The position vector r
of a location P with coordinates (x, y) can now be expressed in polar
coordinates. We parallel transport the position vector r from the origin to
P and then write it as a linear combination of x̂ and ŷ or r̂ and θ̂ at P :

r = xx̂+ yŷ = r cos θx̂+ r sin θŷ = rr̂. (29)
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We wish to find the velocity and acceleration vectors in plane polar co-
ordinates. These are the polar coordinate analogues of v = ẋx̂ + ẏŷ and
a = ẍx̂+ ÿŷ .

• Now, suppose r(t) = r(t)r̂(t) is the position vector of a particle at time
t. As it moves along a trajectory, the radial coordinate r can change, but
so can the direction of the unit vector r̂(t). Thus, its velocity is given by

v(t) = ṙ(t) = ṙ r̂ + r
dr̂

dt
. (30)

ṙr̂ is what we might naively guess as the radial velocity. The other term
comes from the change in direction of the basis vector r̂ .

• Let us take a moment to find the rates of change of the basis unit vectors
r̂ and θ̂ . Being unit vectors, their change can come only from a change in
their direction. For instance,

r̂ = cos θx̂+ sin θŷ ⇒ dr̂

dt
= − sin θ θ̇ x̂+ cos θ θ̇ ŷ = θ̇θ̂, (31)

where we recalled that θ̂ = − sin θx̂+ cos θŷ .

• Thus, the change in r̂ is always in the azimuthal θ̂ direction. Understand
this through the figure

• Similarly,

θ̂ = − sin θx̂+ cos θŷ ⇒ dθ̂

dt
= − cos θ θ̇ x̂− sin θ θ̇ ŷ = −θ̇ r̂. (32)

The rate of change of θ̂ always points radially.

• Putting these together, we get the decomposition of the velocity of the
particle in the polar coordinate basis.
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1.8 Spherical polar coordinates

• The analogue of plane polar coordinates in 3d (R3) are called spherical
polar coordinates (r, θ, φ). They are called the radial, polar and azimuthal
coordinate respectively. They are particularly useful in dealing with sys-
tems where there is spherical symmetry about a central object such a the
Sun in the solar system or the nucleus in an atom.

• Given a point P with Cartesian coordinates (x, y, z), the radial coordi-
nate r is the distance of P from the origin r =

√
x2 + y2 + z2 . Evidently,

0 ≤ r <∞.

• If P has position vector r relative to the origin, then the polar angle θ
is the angle r makes with respect to the upward vertical z axis. Thus θ =
arccos(z/r). Notice that 0 ≤ θ ≤ π with θ = 0 and θ = π corresponding
to the positive and negative z axis. If we regard P as a point on the Earth,
then θ specifies the latitude through P .

• Finally, suppose we orthogonally project the position vector onto the
x-y plane. This projected vector has length r sin θ = x2 + y2 .

• The azimuthal angle φ is defined as the angle that this projection makes
with the x axis, measured counterclockwise. Thus, φ = arccos(x/

√
x2 + y2)

and tanφ = y/x. Notice that 0 ≤ φ < 2π . If we view P as a point on the
Earth, φ specifies the longitude passing through the point P .

• φ is the azimuthal angle for plane polar coordinates on the x-y plane
(it was called θ in that discussion!)

• Unfortunately, the spherical polar coordinate system breaks down along
the z axis, where φ is not uniquely defined (it can be assigned any value
0 ≤ φ < 2π). [When a coordinate system does not cover the whole of R3 ,
we could introduce another set of coordinates that work in the excluded
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region.]

• Alternatively, we may write

z = r cos θ, x = r sin θ cosφ and y = r sin θ sinφ. (33)

Check that tan θ =
√
x2 + y2/z .

• The position vector of a particle located at (x, y, z) is then given by
r = xx̂+ yŷ + zẑ = rr̂ .

• The other formulae we derived for plane polar coordinates may be gen-
eralized to spherical polar coordinates.

• For instance, if r̂, θ̂, φ̂ are the unit vectors in the directions of increasing
r, θ, φ, then the figure helps us express

r̂ = cos θẑ + sin θ(cosφx̂+ sinφŷ),
θ̂ = − sin θẑ + cos θ(cosφx̂+ sinφŷ) and
φ̂ = − sinφx̂+ cosφŷ. (34)

• Verify that (r̂, θ̂, φ̂) is a right-handed orthonormal system.

1.9 Taylor approximation

• Taylor series for one variable. Given a function of one real variable
f(x) that is continuous and hopefully differentiable a few times, we are
interested in approximately evaluating it in the neighborhood of a point
x0 .

• By continuity, f(x) ≈ f(x0) is of course our zeroth order approximation
to the value of the function for x near x0 .

• The next possibility is to approximate f by a linear function near x0 .
It is natural to take the slope of this linear function to be the derivative of
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f at x0 (assuming f is differentiable at x0), so that we approximate the
graph of f by the tangent through the point (x0, f(x0)). This leads to the
first order or linear Taylor approximation

f(x) ≈ f(x0) + f ′(x0)(x− x0). (35)

• To indicate that x− x0 is small, we will denote it by ∆x = x− x0 , and
denote f(x) − f(x0) = ∆f . Then we have ∆f ≈ f ′(x0)∆x. This is only
an approximation

• It is also convenient to introduce the differential of f , which at x is
defined as df(x) = f ′(x)dx. dx is called the differential of x. The deriva-
tive denoted df/dx is the limit of ∆f/∆x as ∆x → 0. For example,
d sinx = cosx dx. The differential of a function is also called a 1-form.

• More generally, if f is n times differentiable at x0 , we have the nth order
Taylor polynomial approximation for small x− x0 :

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2 +
1

3!
f ′′′(x0)(x− x0)

3

+ · · ·+ 1

n!
f (n)(x0)(x− x0)

n, (36)

where f (n)(x0) is the nth derivative of f at x0 .

• For many of the functions we encounter, the Taylor series, obtained by
letting n→∞, converges to the function f(x) for x in a neighborhood of
x0 . Such functions are called real analytic.

• A real-valued function that is continuous in some domain is said to be of
type C0 in that domain. A function that is differentiable with continuous
first derivative is said to be of class C1 in that domain. Similarly we
have the notion of Ck functions for k = 1, 2, 3, . . .: k times continuously
differentiable functions in some domain. A function that is Ck for all
k = 1, 2, 3, 4, . . . is said to be smooth or C∞ . A function whose Taylor
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series converges to the function in some domain is said to be real analytic
or of type Cω .

• For example, show that the Taylor series for 1/(1− x) around x = 0 is
given by a geometric series:

1

1− x
= 1 + x+ x2 + · · · . (37)

This series converges to 1/(1−x) for |x| < 1. Also verify that (1−x)(1 +
x + x2 + · · · ) = 1 by multiplying things out and canceling. Note that
1/(1− x) does not admit a Taylor expansion around x = 1.

• Show that the Taylor series for ex , is given by

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+ · · · . (38)

This series has an infinite radius of convergence. Find the Taylor series for
sinx and cosx.

• The binomial series is a very useful Taylor series around x = 0:

(1 + x)ν = 1 + νx+
ν(ν − 1)

1 · 2
x2 +

ν(ν − 1)(ν − 2)

1 · 2 · 3
x3 + · · · (39)

which converges for |x| < 1 and any (real or complex) number ν . For a
positive integer ν = n, this series terminates and we recover the binomial
expansion with coefficients given by combinatorial factors: (1 + x)n =∑n

r=0

(
n
r

)
xr .

• In particular, show that

1√
1 + x

= 1− x

2
+
x2

8
+ · · · . (40)

• Taylor series for more variables. For a real function f(x, y) of two
variables, we have the Taylor expansion of f around a point (x0, y0):

f(x, y) = f(x0, y0) +
∂f

∂x
|(x0,y0)(x− x0) +

∂f

∂y
|(x0,y0)(y − y0)

+
1

2

[
∂2f

∂x2
(x− x0)2 +

∂2f

∂y2
(y − y0)2 +

∂2f

∂x∂y
(x− x0)(y − y0) +

∂2f

∂y∂x
(y − y0)(x− x0)

]
+ · · ·(41)

where all the partial derivatives are evaluated at (x0, y0). The mixed sec-

ond partials ∂2f
∂x∂y and ∂2f

∂y∂x are equal (Clairaut’s or Schwarz’s Theorem,
assuming the second partials are continuous).
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• To calculate a partial derivative with respect to y we simply differentiate
the function with respect to y treating x as fixed.

• One way to obtain this series is to treat y as fixed and first write down
a Taylor series in x around x0 with coefficients being functions of y . Then
we expand these coefficients in a Taylor series in y .

• Calculate the mixed second partials of f(x, y) = cosxy and show that
they are both equal to − sinxy − xy cosxy

1.10 Some vector calculus

• Scalar fields. At a given instant of time, the pressure p(r) in the
atmosphere is a real number that depends on height, and more generally on
location r . The density ρ(r) of sea water at a given instant of time depends
on depth. Similarly, the salt concentration of sea water c(r) depends on
location. The potential energy V (r) of a massive particle in Earth’s gravity
depends on height above the Earth’s surface as well as the latitude and
longitude. All these are examples of real valued functions in 3d space. We
will also refer to real-valued functions as scalar fields. A scalar field assigns
a real number to each location r . Typically, the real number would vary
smoothly (or at least continuously differentiably) as the location changes.

• Note that the notion of a field introduced here is different from the
algebraic notion of a field (e.g., field of real or complex numbers). Here,
field refers to something that depends on location.

• Vector fields. Similarly, we have the concept of a vector field: a
smoothly varying vector v(r) at each location r . The gravitational force
felt by a point mass m at various locations and heights above the Earth’s
surface defines a vector field.

• In the figure, we have displayed three vector fields on the plane. Since
such a vector field has two components in Cartesian coordinates, a vector
field on the plane may be regarded as a map from R2 → R2 . If x and
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y are the horizontal and vertical directions, then the first vector field is
plausibly v ∝ x̂. The second vector field points radially outwards with a
magnitude increasing with radial distance and is circularly symmetric. It
is plausible that the 2nd vector field v ∝ xx̂ + yŷ = r . The 3rd vector
field could be the velocity vector field of a steadily flowing fluid.

• Gradient of a scalar field. Given a scalar field φ(r), its gradient
is a kind of derivative that produces a vector field denoted ∇φ(r). In
Cartesian coordinates r = (x, y, z),

grad φ = ∇φ(r) =
∂φ

∂x
x̂+

∂φ

∂y
ŷ +

∂φ

∂z
ẑ. (42)

• Example 1: If φ(x, y) = x then ∇φ = x̂ is a constant vector field
pointing in the x direction at all points of R2 .

• Example 2: If φ = 1
2(x2 + y2 + z2), then

∇φ = xx̂+ yŷ + zẑ = rr̂ (43)

is a radially outward pointing vector field on R3 , with magnitude equal to
the distance from the origin.

• At any location r , ∇φ is a vector that points in the direction of most
rapid increase of φ. To see why, it is helpful to introduce the level surfaces
of φ, which are surfaces in R3 on which φ is a constant. For φ to change
most rapidly, we must move from r along a vector that has no component
along the level surface through r . We will argue that at any point r ,
∇φ(r) is orthogonal to the level surface through r . Suppose v is a vector
at r of small magnitude, then the linear Taylor approximation gives φ(r+
v) ≈ φ(r) + v ·∇φ. Now, v is tangent to the level surface through r if
φ(r + v)− φ(r) vanishes to first order in v . This happens precisely when
v ·∇φ = 0. Thus, ∇φ must be perpendicular to the level surface of φ and
must point either in the direction of most rapid increase or decrease of φ.
Taking v = ε∇φ for 0 < ε� 1, we find that φ(r+ε∇φ) ≈ φ(r)+ε|∇φ|2 >
φ(r). Thus we conclude that ∇φ must point in the direction of most rapid
increase of φ.

• If φ is regarded as a potential function, then its level surfaces are referred
to as equipotential surfaces.
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• E.g., For φ(x, y) = x, the level curves are lines parallel to the y axis,
and ∇φ = x̂ points perpendicular to these lines in the direction of most
rapid increase in φ. For φ = 1

2(x2 + y2 + z2), the level surfaces are concen-
tric spheres centered at the origin and ∇φ = r is perpendicular to these
surfaces.

• Line integral. Given a vector field v(r) = (vx, vy, vz)(r) in 3d space
and a parametrized curve γ(t) = (x(t), y(t), z(t)) for 0 ≤ t ≤ 1, we may
define the ‘line integral’ of v along γ as the real number∫

γ

v · dγ =

∫ 1

0

v · dγ
dt
dt =

∫ 1

0

[
vx
dx

dt
+ vy

dy

dt
+ vz

dz

dt

]
dt. (44)

• Here, γ̇ = dγ
dt = ẋx̂ + ẏŷ + żẑ is a vector field along the curve γ (it is

not defined elsewhere in R3). At each fixed t, it is the tangent vector to
the curve at the point γ(t).

• For example, if γ is the helix (cos t, sin t, t), then dγ = (− sin t, cos t, 1)dt.
We may consider dγ as the differential of the map γ : [0, 1]→ R3 .

• The work done by a force field F (r) in moving a particle along a curve
γ is an important example of a line integral: WF (γ) =

∫
γ F · dγ .

• In general, the line integral depends on the values of v all along the
curve γ . However, if v is the gradient of a scalar, v = ∇φ, then the line
integral can be evaluated in terms of the values of φ at the endpoints:∫

γ

∇φ · dγ =

∫ 1

0

(
∂φ

∂x

dx

dt
+
∂φ

∂y

dy

dt
+
∂φ

∂z

dz

dt

)
dt

=

∫ 1

0

dφ(r(t))

dt
dt = φ(r(1))− φ(r(0)). (45)

Here, we viewed φ(x(t), y(t), z(t)) as a function of t and used the chain
rule to differentiate it with respect to t.
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• In particular, if γ is a closed curve, then r(0) = r(1) and the line integral
of a gradient vanishes ∮

γ

∇φ · dγ = 0. (46)

Here
∮

denotes a line integral around a closed contour.

• A vector field that is the gradient of a scalar field is called a gradient
vector field. In mechanics, if a force field F (r) is the gradient of a scalar
field (or ‘potential’ φ(r)), then it is called a conservative force field. The
work done by a conservative force field ∇φ depends only on the initial and
final locations of the particle, and not on the rest of the details of the path
taken. A conservative force field does no work in moving a particle around
a closed curve.

2 Newton’s laws and forces

2.1 Time, light, simultaneity, space & time intervals, masses.

• To describe the dynamics (motion or more precisely the evolution in
time) of mechanical systems, observers find it helpful to have a notion of
time (measured with a clock) to index a sequence of events.

• In Newtonian mechanics, one assumes that if there is a flash of light
somewhere, then all observers (irrespective of their locations) receive the
flash instantaneously. In effect, light is assumed to travel infinitely fast.

• Using such flashes of light, all observers can synchronize their clocks and
assign the same time for a given event.

• Another consequence is that two events (possibly at different locations)
that occur at the same time for one observer occur simultaneously for any
other observer. We say that simultaneity is absolute, not relative.
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• These assumptions about light, time and simultaneity were in line with
common human experience in Newton’s time (as well as today!).

• In Newtonian mechanics, one also assumes that masses of particles, scales
of length and time are the same for all observers. In other words, distances
(like the length of a meter stick) and time intervals (like that between two
ticks of a clock) are the same for all observers.

• Causality. Our experience with physical systems indicates that they
respect the principle of causality: cause precedes effect. For example, a
stone that is stationary is seen to move when it is pushed and not before
that.

• The principle of causality postulates that it is not possible to send a
signal from an event to its past. Given our Newtonian concept of time, all
observers have a common notion of the past and future of an event. The
future of an event that occurs at time t0 consists of all events that occur
at t > t0 and the past consists of events that occurred at t < t0 .

• These notions of time, simultaneity and universality of masses, space
and time intervals had to be discarded and replaced with more accurate
concepts in the special theory of relativity, where speeds of bodies or ob-
servers could be comparable to that of light, which is a large but finite
constant in vacuum (c ≈ 3× 108 m/s).

• Newtonian or nonrelativistic mechanics is a limiting case of special rela-
tivistic mechanics where the speed of light is infinite (very large compared
to other speeds). The principle of causality continues to apply in special
relativity, though the notions of past and future need to be revised.

2.2 Degrees of freedom, instantaneous configurations, trajectories

• A point particle moving in three-dimensional space has three degrees of
freedom: we need three coordinates (say (x, y, z) or (r, θ, φ)) to specify the
location of the particle at the initial instant of time. We could locate the
particle anywhere initially, so x, y and z can be chosen arbitrarily at the
initial instant of time.

• For a system of particles, the number of degrees of freedom is the number
of real parameters (coordinates) needed to specify the locations of all the
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particles in the system at the initial instant of time.

• The number of degrees of freedom does not depend on the nature of
forces. An isolated particle, i.e., a particle that is not subject to any
external influences (feels no force) is called a free particle. A free particle
and a particle subject to Earth’s gravity moving in three-dimensional space
both have three degrees of freedom.

• On the other hand, a point particle that is constrained to move along a
fixed wire has only one degree of freedom. We need one coordinate, say the
distance (arc length) from one end of the wire, measured along the wire to
specify the location of the particle at a given instant of time.

• A particle constrained to move on a spherical surface (such as a bob at
the end of a rigid rod whose other end is attached to a pivot) has only two
degrees of freedom.

• Two point masses moving in three dimensional space have six degrees
of freedom. We need six coordinates (x1, y2, z1) and (x2, y2, z2) to specify
the locations of the two particles. E.g., the Sun and the Earth regarded
as point masses is a system with 6 degrees of freedom. Here, we do not
restrict to a particular orbit of the Earth around the Sun but ask how many
coordinates are needed to specify all possible locations of the Sun and the
Earth at any fixed instant of time, without reference to the nature of the
force between the two.

• A general rigid body like a stone has six degrees of freedom. For con-
venience, we may enumerate them as follows: 3 translational degrees of
freedom to fix the location of a marked point in the body and 3 rotational
degrees of freedom to orient the body holding the marked point fixed.

• A fluid consisting of N ∼ 1024 molecules in a bucket has a very large
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number of degrees of freedom, which can be taken to be the 3N Carte-
sian coordinates needed to specify the instantaneous locations of the N
molecules, treated as point masses.

• An instantaneous configuration of a system of two point particles is any
possible location of the two particles.

• Zeroth law of classical mechanics. The path followed by a particle in
time is called its trajectory. It is a curve parametrized by time and directed
towards increasing time. The zeroth law of mechanics can be regarded
as saying that the trajectory r(t) of a particle is a (twice) differentiable
function of time.

• This not an assumption but rather an assertion about natural phenom-
ena, deduced by observing the motion of terrestrial and celestial bodies.
This assertion applies to the motion of planets, pendulum bobs, cricket
balls etc. But it fails for Brownian motion (movement of pollen grains in
water, which are observed to follow very jagged paths). It also fails for
electrons in an atom, which require a quantum mechanical treatment.

• Isaac Newton formulated three laws of classical mechanics in his Principia
(1687).

2.3 Newton’s 1st law

• Newton’s 1st law, or the law of inertia, says that “Every body continues in
its state of rest, or of uniform motion in a straight line, unless it is compelled
to change that state by a force impressed upon it”. In other words, the
momentum p = mv = mṙ of a particle that is free (isolated or far from
physical interactions) does not change with time. Note that if ṙ does not
change with time, i.e., r̈ = 0, then the trajectory r(t) = r(0) + ṙ(0)t is a
straight line that is uniformly traversed.

• In general, it is found that macroscopic interactions decrease with dis-
tance, so it is possible to isolate a particle by taking it far from other
bodies.

• We have been a bit imprecise in our statement of Newton’s first law.
Newton’s first law generally holds only in certain reference frames. To
specify the components of the position and velocity vectors, we need a
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frame of reference, i.e., an origin and coordinate axes.

• It is found that a particle that is not subject to any forces (i.e., an
isolated body) could fail to follow a constant velocity trajectory in certain
reference frames.

• A frame in which Newton’s first law (as stated above) holds is said to
be an inertial frame. To a reasonable approximation (if one ignores some
effects of the rotation of the Earth), a frame that is fixed in a tennis court is
an inertial frame for the motion of tennis balls, racquets etc. In particular,
if the effects of gravity and friction are ignored (or somehow cancelled, see
below), then tennis balls in this frame would always move uniformly in
straight lines. Note that this same frame may not be considered inertial
for describing certain other phenomena such as the motion of planets!

• It is possible to (essentially arbitrarily) reduce the effects of gravity and
friction in some cases. Consider the horizontal motion of a ball on a ping-
pong table placed in the tennis court. A ball that starts out at rest on the
table is seen to remain at rest. A ping-pong ball that starts out rolling on
the table continues to roll in the same direction though it is seen to slow
down. We attribute this to friction with the surface. The magnitude of
this frictional force depends on the weight of the ball, but by polishing the
surface and ball we may reduce the effect of friction and find that the ball
maintains its velocity for a long time. In this way, we arrive at a body
that is essentially free in so far as its horizontal motion is concerned. Its
uniform motion is evidence in favor of the inertial nature of a frame fixed
to the Earth.

• However, it is found that Newton’s first law for tennis balls fails to hold
in a frame that is attached to a swinging pendulum or a rotating merry-
go-round beside the tennis court. Such frames are called accelerated or
noninertial.

• For instance, a frame that is attached to a bee as it flies irregularly in a
faraway spaceship is not inertial, since a free particle at rest in the same
spaceship would appear to move in a nonuniform manner.

• Note: here, we use the metaphor of the bee for the limited purpose of
defining a frame that moves nonuniformly relatively to the spaceship. A
flying bee is not a free particle - it does not move uniformly, it makes use
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of its internal energy and friction with the air to change direction, speed
up or maintain its speed etc.

• Similarly, a frame that is attached to a top (spinning on the floor of the
spaceship) and participates in its rotational motion is noninertial.

• To summarize, Newton’s first law is the assertion that there is a frame
of reference (called an inertial frame) in which all isolated bodies (far from
physical interactions) move at constant velocity.

• As we will see shortly, from a principle enunciated by Galileo, an inertial
frame is not unique.

• Henceforth, unless otherwise stated, all quantities will be specified with
respect to an inertial frame of reference.

• There are indirect ways to check whether a frame is inertial even if one
cannot isolate particles. This makes use of Newton’s second law (which is
a statement about inertial frames) and its consequences. Roughly, suppose
we assume a frame is inertial, deduce consequences using Newton’s second
law and find that they are experimentally violated. Then, one possible
reason for the discrepancy can be that the frame was not inertial to begin
with. The Foucault pendulum gives a concrete realization of this idea and
strongly suggests that the Earth is not quite an inertial frame, due to its
rotation on its axis.

2.4 Newton’s 2nd law

• The departure from rest or uniform motion along a straight line (in an
inertial frame) is caused by forces. For example, tugging at a string that
is attached to a ball exerts a force on the ball and makes it accelerate.

• Forces typically arise from interactions between objects. The Earth
exerts a force on a ball that is dropped, making it accelerate downwards.

• Newton’s 2nd law says that in an inertial frame, the rate of change of
momentum ṗ is equal to the impressed force. In particular, it is in the
direction in which the force acts.

• For a single particle of mass m, the acceleration a = r̈ = ṗ/m along
the trajectory r(t), due to the force F is determined by the ‘equation of
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motion’
mr̈ = F or ṗ = F . (47)

The mass (more precisely, inertial mass) m of the particle is postulated to
be independent of time.

• We may use Newton’s 2nd law to give a way of assigning inertial masses
to bodies. We begin by selecting a reference body A and choose units in
which its inertial mass is assigned the value 1. We apply a force to A (e.g.,
let a compressed spring push it), and record its acceleration aA . Given
body B whose inertial mass we wish to determine, we apply the same
force to it, and measure its acceleration aB . Then we assign the mass
mB = |aA|/|aB|.
• The force is generally a vector field F (r), it could depend on the location
of the particle. To begin with, the force field may not be known to us, so
we do experiments with particles, observe their trajectories (measure their
accelerations) and thereby deduce what the force field may be. Having
done some such experiments, we develop a formula or picture of the force
field. This is called the inverse problem: determination of the force from
observed motion of particles. Having done this to our satisfaction, we may
then make predictions of what a given particle may do when subjected to
this force field by solving Newton’s equation with prescribed initial con-
ditions and the available information on F (r). This latter problem is
called the direct problem: finding trajectories given a force field. We then
compare these predicted trajectories with new observations to validate our
formula/picture for the force field. If discrepancies are found, we may need
to update our formula for the force field. Thus, one goes back and forth
between the inverse and direct problems.

• In Cartesian coordinates, the trajectory is given by r(t) = (x1, x2, x3) =
(x, y, z) and Newton’s second law becomes mẍi = F i . It is conventional to
use superscripts for coordinates, here y = x2 is not the square of x. This
component form of Newton’s equation changes in curvilinear coordinates,
such as spherical polar coordinates (i.e., it does not simply say mr̈ = F · r̂
etc.). For instance, there could be terms involving products of first deriva-
tives of coordinates in addition to naive second derivative ‘acceleration’
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terms as we found in plane polar coordinates:

m(r̈ − rθ̇2) = F · r̂ and m(rθ̈ + 2ṙθ̇) = F · θ̂. (48)

One may transform the equation from Cartesian coordinates to the desired
system to find the form it takes.

• Being 2nd order in time, Newton’s equation requires both the initial
position r and velocity or momentum (ṙ or p) as initial conditions. For a
particle with 3 degrees of freedom, these would amount to 6 pieces of ini-
tial data (6 real numbers), say x(0), y(0), z(0) and px(0), py(0), pz(0). The
knowledge of the current position and momentum determines the trajectory
via Newton’s 2nd law. Bearing this in mind, we define the state of the par-
ticle as being specified by giving its instantaneous position and momentum.
Thus, the knowledge of the current state of the particle along with New-
ton’s second law determines its future evolution (trajectory). For instance,
for a particle moving on a line subject to a force field f(x), if we know x(t)
and p(t), then at the next instant of time, p(t + δt) ≈ p(t) + (δt)f(x(t))
and x(t+ δt) ≈ x(t) + (δt)p(t)/m.

• The path of the particle r(t) (satisfying Newton’s equation and initial
conditions) is called its trajectory. Trajectories are oriented by arrows
specifying forward time evolution.

2.5 Galileo’s relativity principle, space-time homogeneity and isotropy of
space

• Notice that Newton’s 2nd law relates the force to the second derivative of
position along a trajectory, as opposed to the first, third or other derivative.
This is to incorporate Galileo’s relativity principle which says roughly that
there is no dynamical way of telling if a frame is at rest or moving uniformly
relative to an inertial frame.

• In 1632, Galileo Galilei observed that it was not possible to detect the
uniform motion (constant velocity motion without rocking) of a ship rela-
tive to the shore by performing mechanical experiments under the deck of
the ship (i.e., without looking out or by using external forces etc.).

• These experiments could include observing the motion of projectiles (e.g.
how long it takes for a ball thrown horizontally at a given speed to reach a
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wall), the manner in which water drips from a jug, how flies and fish move
and so on.

• It is important to note that Galileo’s principle is not concerned with
forces external to the lab. In other words, if the acceleration due to grav-
ity varies with location, then it may be possible for an observer in the
uniformly moving ship to infer that the ship’s frame is moving relative
to the shore. Thus, Galileo’s principle asserts that the relative motion of
bodies in the lab is the same whether observed when the ship is docked or
when it is uniformly moving.

• This idea is elevated to the principle of Galilean relativity, which states
that the laws of mechanics must take the same form in two inertial frames
that are in uniform motion relative to each other.

• Galileo’s principle of relativity continues to hold in special relativity.
To accommodate the constancy of the speed of light, Einstein modified
the transformation rule that relates coordinates in two frames that are in
uniform motion relative to each other.

• In Galilean relativity, it is assumed that

(a) the mass of a particle is the same in two frames that are in uniform
relative motion,

(b) both observers use the same scale for measuring distances and

(c) both observers agree on the time interval between any pair of events.

• In other words, uniformly moving measuring sticks have the same length
as when they are observed at rest and a clock that is moving at a constant
velocity neither slows down nor speeds up relative to a clock at rest.

• With these assumptions, the appearance of acceleration r̈ (rather than
velocity ṙ) in Newton’s 2nd law can be motivated. It ensures that when
referred to a frame S ′ moving at constant velocity u relative to an inertial
frame S , Newton’s 2nd law takes the same form for a system of (interacting)
particles.

• For example, suppose the frames coincide at t = 0 so that r′ = r − ut.
Then r̈ = r̈′ as m d2

dt2 (ut) = 0. Then the equation for a free particle is the
same in both frames mr̈ = 0 and mr̈′ = 0. A particle is free in one frame
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iff it is free in the other.

• Similarly, Newton’s second law for a pair of particles subject to an in-
terparticle force that depends on the relative distance between the two
particles,

mr̈1 = F2 on 1(|r1 − r2|) & mr̈2 = F1 on 2(|r2 − r1|) (49)

takes the same form in frame S ′ with r1 and r2 replaced with r′1 and r′2
since

r1 − r2 = r′1 + ut− r′2 − ut = r′1 − r′2. (50)

The velocity u cancels out from the difference in position vectors. The
relative velocity between the frames u makes no appearance.

• u also cancels out from the difference in velocity vectors ṙ1 − ṙ2 so
the same conclusion also applies to interparticle forces that depend on
velocities (such as friction).

• Thus, practically speaking, (1) projectiles move in exactly the same way
when observed in two frames in uniform relative motion (ignoring a possible
variation of the external gravitational acceleration) and (2) a brick sliding
on a plank subject to friction displays the same dynamics irrespective of
whether the experiment is performed below the deck of a docked ship or a
uniformly moving ship.

• Newton’s 2nd law for a particle subject to an external force mr̈ = F (r)
however is not the same in the two frames. It becomes mr̈′ = F (r′ +ut).
The appearance of u in this frame would mean that one could find out
which frame corresponds to the moving ship and which to the docked
ship. For instance, variation in the acceleration due to gravity at different
locations could be used to determine that the experiment was performed
in a moving ship rather than at a fixed location on the shore. This does
not violate Galileo’s principle of relativity since the latter is not concerned
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with external forces but with interparticle forces.

• If Newton’s 2nd law for a particle involved velocity instead of accelera-
tion, say νṙ = G, then in a frame moving at velocity u, the equation for
a free particle would take the form ν(ṙ′+u) = 0. The appearance of u on
the left of this equation implies that it does not have the same form as the
equation νṙ = 0 in S and would allow us to determine the velocity u of
the frame S ′ relative to S and thereby tell the frames apart, in violation
of Galileo’s principle.

• Relating the force to the second derivative of position (as opposed to, say,
the third derivative of r(t)) is the simplest way of incorporating Galileo’s
principle.

• Fortunately, experiments and observations confirm that Newton’s 2nd law
accurately describes both terrestrial and celestial mechanical phenomena
(motion of tennis balls, planets etc.), so there is no need to include higher
time derivatives in Newton’s second law, although they would not violate
Galileo’s principle.

• There are other reasons to avoid higher time derivatives on the LHS of
Newton’s equation. Indeed, suppose Newton’s second law for the position
x(t) of a particle moving along a line had a 3rd derivative term: mẍ+ν

...
x =

f , for some constant ν 6= 0, where f is the force. Now, consider a free
particle, f = 0. The equation mẍ + ν

...
x = 0 may be integrated once to

get mẋ + νẍ = α and integrated a second time to get mx + νẋ = αt + β
for constants of integration α, β . It can be shown that the solution of this
first order equation is

x(t) = γe−mt/ν +m−2 [m(β + αt)− αν] . (51)

where γ is a third constant of integration. For γ, ν 6= 0, this is clearly not
of the constant speed form x(0)+v(0)t. Thus, in violation of Newton’s 1st
law, this free particle trajectory does not have constant speed. We conclude
that a third derivative term on the left of Newton’s 2nd law equation would
not be consistent with Newton’s first law.

• Can the LHS of Newton’s equation mr̈ = F include a term such as
λr for some constant λ? No, for more than one reason. (a) This would
violate Newton’s first law, free particles would not always follow straight
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line trajectories with constant speed. Indeed for λ 6= 0, mẍ+λx = 0 does
not admit the constant speed solution x(t) = vt+ x0 . (b) It would violate
the homogeneity of space which requires that the laws of mechanics be
the same at all locations. Given the same external conditions, the results
of mechanical experiments do not depend on where they are performed.
Mathematically, Newton’s 2nd law equation must be translation-invariant.
Suppose we make a translation x′ = x+a, then mẍ+λx = f would become
mẍ′ + λ(x′ − a) = f , so that Newton’s equation would not take the same
form in a frame that is shifted by distance a relative to the original frame.
Note that interparticle forces are translation invariant, since they depend
on the relative locations of particles; the problem lies in the appearance of
a on the LHS of the equation of motion in the shifted frame.

• We also postulate that the laws of mechanics do not pick out any par-
ticular direction at any given location. We say that space is isotropic. The
orientation of a frame has no dynamical significance. Holding external con-
ditions the same, rotating the experimental apparatus does not change the
results of experiments.

• Along with homogeneity and isotropy of space, we also postulate the
homogeneity of time. Given identical external conditions, the results of
mechanical experiments must not depend on when they are done. In other
words, the equations of mechanics must be invariant under translations
of time t → t′ = t + t0 . For instance, the masses of a pair of particles
that interact through interparticle forces cannot change with time. Since
d
dt = d

dt′ , Newton’s equation of motion mr̈ = f takes the same form (for a
force that is not explicitly time-dependent) whether we use t or t′ .

• Space rotation invariance, space and time translation invariance along
with the invariance under a change from an inertial frame to one moving at
constant velocity are together termed the Galilean invariances of the laws
of mechanics.

2.6 Linear superposition of forces

• Suppose a particle is acted upon by two forces F1 and F2 . Then ac-
cording to the superposition principle, the total force F on the particle
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or resultant of the two forces is the vector sum F = F1 + F2 . This is
to be expected from Newton’s 2nd law ma = F : acceleration is a vec-
tor and so force must also be a vector and vectors can be added using
the parallelogram law to obtain the total force. Newton does not mention
the superposition principle for forces as a separate law, but states it as
Corollary 1.

• It is noteworthy that Newton had more than three laws (about 5 or 6) in
his manuscript De motucorporum in mediis regulariter cedentibus that he
wrote a couple of years before the Principia. Some postulates/laws, such
as a version of the principle of relativity were later demoted to corollaries
of what we now call his three laws of motion.

• The superposition principle is very useful. It allows us to separately
determine individual forces on a body, which may have distinct origins
(gravitational, frictional, electric etc.) before adding them up to find the
total force.

• Note that we do not have a superposition principle for solutions of
Newton’s equation in general. For example, suppose mr̈1 = f1(r1) and
mr̈2 = f2(r2) are trajectories in the presence of individual forces. Then
putting r = r1 + r2 , we get mr̈ = f1(r1) + f2(r2). However, the latter
is generally not equal to the vector field f1 + f2 evaluated at r1 + r2 . So
we cannot in general ‘add’ trajectories in the presence of separate forces
to get a trajectory when both forces are present. The 1d example of a
superposition f = −kx + c of a linear restoring force f1 = −kx and a
constant force f2 = c provides a counterexample. Suppose mẍ1 = −kx1

and mẍ2 = c are trajectories in the presence of the separate forces. Verify
that the sum of these trajectories x = x1 + x2 satisfies mẍ = −kx1 + c
which differs from the desired equation mẍ = −kx+ c = −k(x1 + x2) + c.
In general, it is meaningless to add solutions to Newton’s equation: they
typically do not form a linear space.

• Moreover, the superposition principle does not say that we can superpose
solutions to Newton’s equation for a given force field to get new solutions in
the same force field. For instance, suppose mr̈1 = f(r1) and mr̈2 = f(r2),
i.e., r1(t) and r2(t) are solutions of Newton’s equation for the same force
field f . Then in general r = r1 + r2 is not a solution of the equation
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mr̈ = f(r). This is because the force could depend nonlinearly on the
location.

• Similarly, suppose a composite body is made up of several constituent
parts (e.g. a rigid body made of several point masses). Then the total force
on the composite body is the vector sum of the forces on its constituents.

2.7 Newton’s 3rd law

Newton’s 3rd law says that ‘to every action there is always opposed an
equal reaction’. In other words, if body A exerts a force F on body B ,
then B exerts a force −F on A. These two forces are called the impressed
and expressed forces. While the third law is not needed to understand
the motion of a particle subject to given external forces, it is needed to
understand the motion of bodies subject to interparticle forces. The third
law concerns forces in an inertial frame.

• E.g. 1: The Sun attracts the Earth with a force equal in magnitude and
opposite in direction to the force exerted by the Earth on the Sun.

• E.g. 2: A cubical block of concrete of mass m that lies on the floor
exerts a downward force on the floor of magnitude equal to mg , where g
is the magnitude of the acceleration due to gravity. (Note: this is not the
force of the Earth on the block!) On the other hand, the floor exerts an
upward ‘normal reaction’ force N of the same magnitude mg on the block.
Notice that the impressed and expressed forces act on different bodies. In
this example, both forces can be called normal surface forces, it is just
conventional to call the force of the floor on the block by the name normal
reaction force. The force of the block on the floor is equally well a normal
reaction force. In a fluid, such equal and opposite normal surface forces
between small neighboring volumes of fluid go by the name of pressure.

• For future reference. Newton’s third law also helps us distinguish be-
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tween a real force and a fictitious force in an accelerated or noninertial
reference frame that we will encounter in §8.1. According to Newton’s
third law, an acceleration due to a real force felt by a body is distinguished
by the presence of an equal and opposite reaction force on some other body.

2.8 Dynamics, kinematics and statics: what do they refer to?

• Dynamics refers to the evolution of a system in time. By this we mean
the behavior of the system with the passage of time due to the forces in
operation. To understand the dynamics, we need to know the forces and
interactions present. An aim of dynamics is to find the trajectory by solving
the equations of motion (EOM), given the initial conditions. By Newton’s
second law, doing this requires the knowledge of forces. The result of this
exercise for some initial conditions could be that the parts of the system
do not move while for other initial conditions the parts of the system may
move. The equations of motion are also called the dynamical equations.

• Statics refers to situations where a system does not change with time.
For example, a static solution of the EOM for a particle is one where r(t)
is independent of time. To discover static solutions, we need to know the
forces and solve the equations of motion.

• In a somewhat different direction, kinematics refers to those aspects
of the system and its motion that do not depend on the specific forces
that act, but on other features like the number of degrees of freedom, the
range of values that physical variables can take, how these values change
in different frames of reference, etc. The problem of finding the trajectory
x(t) from a known acceleration ẍ(t) function is kinematical, while finding
the trajectory from the forces involves dynamics.
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2.9 Dimensional analysis and units

• Physical quantities like the Cartesian components of the position of a
particle, a time interval or a force can each be assigned a dimension. It
turns out that the dimensions of all the mechanical quantities we encounter
can be expressed in terms of three basic dimensions: mass M , length L
and time T .

• More precisely, any quantity F can be assigned a dimension [F ] =
MαLβT γ for some real numbers α, β, γ (which are typically rational num-
bers). If α = β = γ = 0, the quantity is said to be dimensionless. Con-
sistency requires that all terms in an equation have the same dimensions.
This gives a quick way of eliminating some errors in equations.

• Examples of dimensions of physical quantities

[mass] = M, [length] = L, [time] = T, [velocity] = LT−1,

[acceleration] = LT−2, [momentum] = MLT−1,

[force] = MLT−2, [energy] = ML2T−2. (52)

• What is the dimension of an angle?

• Units. The most commonly used systems of units in mechanics are the
SI and CGS systems.

• In the International System of Units (SI), the basic units of length, mass
and time are the meter, kilogram and the second. The unit of force is
called the Newton 1N = 1 kg m / s2 .

• In the CGS system, the corresponding base units are the centimeter,
gram and second. The unit of force is called the dyne, (one Newton is 105

dyne).

2.10 Examples of forces

• Gravity. The gravitational force played a central role in the development
of mechanics. Newton proposed his universal law of gravitation and devel-
oped his laws of mechanics in large part to understand the motion of the
planets.

• Newton’s law of gravity says that the force between two point masses m1
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and m2 (called gravitational masses, more on this shortly) is attractive and
proportional to the product of the masses and is inversely proportional to
the square of the distance of separation. The constant of proportionality is
Newton’s gravitational constant G. If r1 and r2 are the position vectors
of the two particles, then the force exerted by m1 on m2 points from m2

towards m1 and is given by:

F1 on 2 = −G m1m2

|r1 − r2|3
(r2 − r1) (53)

By Newton’s third law, m2 exerts an equal and opposite force on m1 given
by F2 on 1 = −F1 on 2 .

• Principle of superposition of forces. Newton’s law of gravitation
applies to point particles. However, it may be used to calculate the force
due to extended bodies on point masses or on other extended objects. In
order to do this, one repeatedly uses the principle of linear superposition,
which states that the force due to two objects on a given particle is the
vector sum of the individual forces. Furthermore, the force on a composite
body is the vector sum of forces on all its constituents.

• By using the principle of superposition, one may show that the force on
a point mass m that lies outside a spherically symmetric mass distribution
is the same as the force due to a point particle (with mass equal to the
total mass M of the distribution) located at the center of the distribution.

• For example, the force due to a thin spherical shell of radius R and mass
M centered at the origin on a point mass m located at r (with r > R) is
given by −GmM r̂

|r|2 . It turns out that the force vanishes inside the shell
due to a cancellation of forces due to diametrically opposite parts of the
spherical shell. These diametrically opposite surface elements have mass
proportional to their area, which grows as the square of the distance from
the apex of a cone. This quadratic growth is cancelled by the inverse square
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fall off in Newton’s gravitational force so that the two elements exert equal
and opposite forces on a mass inside the shell.

• This is an opportunity so say a bit more on the concept of mass. The mass
mi that appears in Newton’s second law F = mia is called the inertial
mass. Using Newton’s 2nd law, we have described a way of assigning
inertial masses to bodies, relative to that of a reference body.

• On the other hand, the masses that appear in Newton’s law of gravity
F2 on 1 = Gm1gm2gr̂/r

2 are the gravitational masses, with r = r2−r1 . (We
will say more on this in the context of Kepler’s laws of planetary motion.)

• Let us now focus on the gravitational force of the Earth on small bodies
near its surface. At the surface of the Earth, the force on a gravitational
mass mg is F = −GMemgr̂/R

2
e where Me is the gravitational mass of the

Earth and Re the radius of the Earth. The acceleration due to gravity
of the body is then a = F /mi = −(GMe(mg/mi)/R

2
e)r̂ . This downward

pointing acceleration is denoted g . On the face of it, the acceleration due
to gravity depends on the body through its inertial and gravitational mass.

• Equivalence principle. The surprising experimental observation is
that the acceleration due to gravity is the same for all bodies. The story of
different objects falling in unison from the leaning tower of Pisa is a way
to remember this. The magnitude of this acceleration g is approximately
9.8 m/s2 .

• Thus, the ratio mg/mi must be the same for all bodies. By absorbing
this constant ratio into G, we arrive at the equality mi = mg . This is called
the principle of equivalence of inertial and gravitational masses. Since we
have already assigned inertial masses to bodies, the Equivalence principle
gives a way of assigning gravitational masses as well. Henceforth we will
not make a distinction between inertial and gravitational masses.

• The weight of a body is defined as the Earth’s gravitational force acting
on it. At the the surface of the Earth, the weight of a body of mass m
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is W = −(GMem/R
2
e)r̂ = mg . Since weight is a force, it is measured in

Newtons in SI units. The weight, as defined above, is independent of the
motion of the body.

• Normal reaction. There is a concept related to the weight of a body
that is sometimes confused with it. Consider a body of mass m at rest
on the Earth. Balance of forces in the vertical direction implies that the
floor must exert a ‘normal reaction’ force N = −mg upwards on the body.
This is the force that the floor exerts to support the body.

• Now suppose the body is in an elevator that accelerates upwards at
the rate a. The force due to gravity on the mass is still its weight W = mg .
Then Newton’s second law implies that ma = N +W or N = m(a− g).
Since N and a point upwards, while g points downwards, the magnitude
of the normal reaction is N = m(a+ g). This is the force that the floor of
the elevator must exert upwards to support the body. The magnitude of
N exceeds the magnitude of the weight of the body. A ‘weighing’ scale is
usually calibrated to read the value |N |/g .

• Electrostatic force. Charged particles exert electrostatic forces on
each other. They are found to attract or repel. The force between point
charges is summarized in Coulomb’s law, which is very similar to Newton’s
law of gravitation between point masses, it is proportional to the product
of electric charges and falls off inversely with the square of the distance
of separation. However, while masses always attract, like charges (of the
same sign) repel and unlike charges (with opposite signs) attract.

• Many forces we are familiar with have their microscopic origin in electro-
static forces between molecules. The frictional force between a body and a
surface, the viscous force between layers of a fluid or between a fluid and a
body moving through it are macroscopic manifestations of electric forces.
The force that a stretched string exerts also has its microscopic origin in
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electric forces between molecules.

• For this reason, the electric force is called a fundamental force while
friction and viscosity are called emergent or phenomenological forces.

• Friction and viscosity are also examples of contact forces, exerted when
bodies are in contact.

• Though these forces arise from electrostatic interactions, it is often not
practical to deduce their strength from microscopic considerations. They
are usually described via effective macroscopic formulae based on experi-
mental measurements like Hooke’s law for a spring.

• For instance,

1. The drag force on a sphere moving slowly through a fluid is approxi-
mately proportional to its speed and points in a direction opposite to
its velocity.

2. Neighboring segments of a stretched string are found to exert a ten-
sional force on each other tending to elongate each segment. The
tension can usually be modeled as a constant force along the length of
the stretched string.

• Aside from gravity and electromagnetic forces, there are two more fun-
damental forces: the weak and strong nuclear forces. The latter are very
short-ranged and act typically over nuclear and subnuclear scales. They
are responsible for radioactive decay and for binding neutrons and protons
in nuclei.

3 Momentum, Energy, Work, Angular momentum, Dynamical
variables

• The (linear) momentum of a particle of mass m moving at velocity v
is defined as p = mv . If there is no force, then each of the components
px, py, pz of momentum is conserved, since ṗ = F = 0 (this is Newton’s
first law). If the force only acts downwards, then the horizontal components
of momentum px, py are conserved.
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3.1 Work done by a force and conservative forces

• Work done by a force. Suppose a particle is moved from position a
to b along a trajectory γ given by r(t) for t0 ≤ t ≤ t1 , then the work done
by the force F (r) is defined as the line integral

W (γ) =

∫
γ

F · dr =

∫ t1

t0

F · dr
dt
dt. (54)

In general, this work depends on the trajectory and not just on the end-
points r(t0) = a and r(t1) = b.

• However, there is a special class of forces where this work depends only
on the endpoints. In fact, suppose the force field is given by the negative
gradient of a potential function F (r) = −∇V (r). Then the work done by
such a ‘conservative’ force is

W (γ) = −
∫ t1

t0

∇V · dr
dt
dt = −

∫ t1

t0

dV (r(t))

dt
dt = V (a)− V (b), (55)

which is seen to be the drop in the potential. Here we used the chain rule
to write

∇V ·ṙ =

(
∂V

∂x
,
∂V

∂y
,
∂V

∂z

)
·
(
dx

dt
,
dy

dt
,
dz

dt

)
=
∂V

∂x

dx

dt
+
∂V

∂y

dy

dt
+
∂V

∂z

dz

dt
=
dV

dt
.

(56)

3.2 Conserved energy for a conservative force

• Many interesting forces such as the gravitational force, the electrostatic
force and the simple harmonic restoring force (but not friction, see (60)) are
conservative F = −∇V . For such conservative forces, Newton’s second
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law becomes mr̈ = −∇V (r). This implies that the sum of kinetic and
potential energies, E = 1

2mṙ
2 + V (r) is conserved along trajectories:

Ė = mṙ · r̈ + ∇V (r) · ṙ = ṙ(mr̈ + ∇V ) = 0 since mr̈ = −∇V. (57)

We have used Newton’s equation of motion, which means that we have
shown that E is constant along a trajectory assuming the force is con-
servative. A curve qualifies as a trajectory if it satisfies the equation of
motion mr̈ = F .

• We say that the energy is a conserved quantity or a constant of motion
if the forces are conservative (expressible as the gradient of a potential).

• This total energy may also be expressed in terms of momentum p = mṙ

rather than velocity: E = p2/2m+ V (r). In the latter form, the energy is
also called the Hamiltonian.

• One can obtain this conserved energy by integrating Newton’s equation
of motion once using an integrating factor.

• Consider motion on a line (one degree of freedom). For a conservative
force f = −V ′(x), Newton’s equation mẍ = f becomes mẍ+ V ′(x) = 0.

• Multiplying by the ‘integrating factor’ ẋ, we get

mẍẋ+ V ′(x)ẋ = 0 or
d

dt

(
1

2
mẋ2 + V (x(t))

)
= 0. (58)

Thus, the total energy E = 1
2mẋ

2 + V (x) is conserved. This energy is the
sum of a kinetic energy 1

2mẋ
2 (which accrues from the particle’s motion)

and the previously introduced potential energy V (x).

• Work-kinetic energy relation Interestingly, even if the force is not
conservative and there is no potential V , the work done by the force while
moving a particle along a trajectory can be expressed as the increase in
kinetic energy 1

2mv
2 . Indeed, suppose r(t) for ta ≤ t ≤ tb is a trajectory

from a to b, then using Newton’s second law,

W (γ) =

∫ tb

ta

F · dr
dt
dt =

∫
dp

dt
· v dt =

∫
d(mv)

dt
· v dt

=

∫ vb

va

mv · dv =

∫
1

2
md(v2) =

1

2
mv2

b −
1

2
mv2

a.(59)

• This result is called the work-energy theorem or principle.
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• Let us contrast this with formula (55) for the work done by a conservative
force (which depends only on the difference in potential energies at the end-
points of a trajectory). Despite appearances, the RHS of (59), (where we
make no assumption about the force being conservative) generally depends
on the trajectory and not just the endpoints a and b.

• In fact, the kinetic energies at a and b depend on the velocities (or mo-
menta) at a and b. As we noted in our discussion of Newton’s second law,
the specification of initial position and momentum is enough to determine
an entire trajectory.

3.3 Example of a nonconservative force: damping force

• Of course, not every system is conservative. In fact, most real-world
systems are not conservative due to interaction with the environment: dis-
sipation, external driving etc.

• For instance, suppose a particle moves under the influence of both a
conservative force as well as a frictional or damping force proportional to
its velocity

mẍ = −V ′(x)− γẋ with damping coefficient γ > 0. (60)

• The frictional force −γẋ, being dependent on ẋ, cannot be written as the
derivative (with respect to x) of some function of x. Thus, this frictional
force is not conservative.

• In this case, we may show that the above-defined energy is nonincreasing.
Multiplying (60) by ẋ, we get

d

dt

(
1

2
mẋ2 + V (x)

)
= −γẋ2 ≤ 0. (61)

3.4 Angular momentum

• The angular momentum (about a chosen origin) of a particle moving in
3d space is L = r × p, where r is the position vector of the particle from
the chosen origin. In components

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx. (62)
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Angular momentum is also called the moment of momentum. Formulae
for successive components are obtained by cyclically permuting x → y →
z → x.

• Newton’s force law then implies that the rate of change of angular mo-
mentum is the torque (or moment of force) about the same origin:

L̇ = ṙ × p+ r × ṗ =
1

m
p× p+ r × F = r × F ≡ τ . (63)

• A particularly important example is a central force, i.e., one which points
radially along the line from the origin to the particle. Newton’s gravita-
tional force between point masses, as well as Coulomb’s electrostatic force
between point charges, are central forces.

• The torque due to a central force about the force center vanishes since
r and F are collinear. Thus, we conclude that the angular momentum
of a particle moving in a central force field is independent of time, it is a
conserved quantity.

• For a projectile moving under the vertical gravitational force, the torque
must be in the horizontal plane.

• So the vertical component of angular momentum Lz = xpy − ypx must
be conserved. Since px and py are also conserved, we conclude that the
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trajectory (x, y, z)(t) must be such that its projection on the horizontal
plane is a straight line Lz = xpy − ypx .

• In fact, one can show that the trajectory of a projectile is a parabola over
the x-y plane. Knowledge of conserved quantities allowed us to clarify the
nature of the trajectory.

3.5 Dynamical variables, phase & configuration spaces and conserved quan-
tities

• Dynamical variables. The components of position r , momentum p,
angular momentum L = r × p and energy E = p2

2m + V (r) are interesting
physical quantities associated with the dynamics of a particle. They are
examples of dynamical variables or observables (a term that is used more
in the quantum mechanical context). They can change with time.

• In general, any real function f(r,p) of the components of the position
and momentum of a particle is a dynamical variable. The potential V (r) is
a dynamical variable. The components of position x, y, z and those of mo-
mentum px, py, pz are the basic dynamical variables. In general, dynamical
variables change along the trajectory.

• Note that the mass of a particle, a spring constant or the charge of a
particle are not dynamical variables. They are called parameters and are
used to specify the nature of the particle or system. They are not functions
of positions and momenta.

• Recall that the set of possible instantaneous positions of the particles in
a system is called its configuration space (denoted Q). The number of
degrees of freedom is the dimension of the configuration space.

• For one particle moving along a line, its position is specified by the
position coordinate x, which can take any real value. Thus the configura-
tion space of such a particle is R1 . A point particle moving in 3d space
has Q = R3 with coordinates x, y, z . Two point particles moving in 3d
has Q = R6 with coordinates given by the positions coordinates of both
the particles x1, y1, z1, x2, y2, z2 . What is the configuration space of a rigid
rotor - a rigid stick of zero thickness and length l?

• Newton’s equation of motion mr̈ = f is 2nd order in time. Knowledge
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of the initial configuration is not sufficient to determine the trajectory of
a mechanical system. For instance, for a particle, we need to know both
the initial position r(0) and momentum p(0) to determine the trajectory
by solving Newton’s equation of motion. The pair (r(t),p(t)) is called the
state of the particle at time t.

• The set of possible instantaneous states of the particle is called its state
space or phase space M . For a particle moving on the real line, the
phase space is R2 parametrized by the pair of coordinates (x, p). For a
particle moving in 3D space, its configuration space is R3 and its phase
space is R6 (locations and momenta).

•With the concept of the phase space at hand, a dynamical variable may
be defined as a (sufficiently smooth) real-valued function on phase space.
For one particle moving on a line, a dynamical variable is a function f(x, p).
f gets its time-dependence from that of x and p. Sometimes, one includes
explicitly time-dependent functions f(x, p, t) as dynamical variables.

• The path of the particle r(t) (satisfying Newton’s equation and initial
conditions) is called its (configuration space) trajectory. Trajectories are
oriented by arrows specifying forward time evolution.

• Also of interest is the trajectory in phase space, the curve (~x(t), ~p(t))
in phase space. A phase portrait is a sketch of trajectories on phase
space. Draw the phase portrait of a free particle that can move on a
straight line.

• Conserved quantities. Conserved quantities are dynamical variables
that are constant along every trajectory. This means the value of a con-
served quantity does not change as the system evolves. The value of a
conserved quantity may differ from trajectory to trajectory. For example,
momentum is a conserved quantity for free particle motion. But the value
of momentum in general differs from trajectory to trajectory, depending
on how fast the particle is moving. In general, the value of a conserved
quantity is determined by initial conditions.

• Conserved quantities are useful. They help us solve/understand New-
ton’s equation for the trajectory. E.g., for a particle moving on a line sub-
ject to a conservative force, Newton’s 2nd order equation mẍ = −V ′(x)
can be reduced to a first order equation stating the conservation of energy.
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We may then integrate once more and get an (implicit) expression for x(t):

E =
1

2
mẋ2 + V (x) ⇒ dx

dt
= ±

√
2

m
(E − V (x))

⇒ t− t0 = ±
∫ x

x0

dx′√
2
m (E − V (x′))

. (64)

• Conservation of energy has allowed us to reduce the order of Newton’s
original differential equation by one.

• It is noteworthy that both signs correspond to forward time evolution
(t ≥ t0). The positive sign corresponds to a situation where x > x0

(rightward motion) while the negative sign corresponds to x < x0 (leftward
motion). More on this below.

• In effect, we have solved Newton’s second order equation of motion in
two steps. Energy is the constant of integration in the first step and x0 is
the second constant of integration. We can think of x0 and E as specifying
(partial, see below) initial conditions at time t0 . Though t0 is a constant
of integration we do not regard it as as an initial condition, but rather
designate it as the initial time.

• Our answer expresses t as a function of x. We must invert it to find
trajectories x(t) with energy E and initial location x0 at t0 .

• Interestingly, there is often more than one trajectory with fixed energy
and initial location, corresponding to the ± signs.

• This is to be expected, since specification of energy allows two possible
initial velocities in general v0 = v(t0) = ±

√
(2/m)(E − V (x0)).

• There are exceptions. If the particle is at a turning point of the potential
E = V (x0), initially, then v0 = 0 and the particle has only one way to go,
‘down hill’.
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• So specification of energy and initial location is, in general, not a com-
plete specification of the instantaneous state of the particle.

• Explain in qualitative terms the motion of a particle in a potential of the
sort shown in the figure for given energy E and initial position x0 . Which
way does the force point at various locations. Which parts of the x-axis
are forbidden from being explored? Where does the particle move fastest?
Identify equilibrium and turning points for the motion. Argue that the
force may be called restoring. In doing the integration, specify when to
use the + and − signs. Argue that the motion is oscillatory and periodic
in time.

4 Collisions or scattering and conservation laws

• We will now illustrate the use of conserved quantities (mass, momentum
and energy) in the context of collisions.

• By a collision of point particles, we shall mean an interaction among
particles that behave as free particles in the asymptotic past and future so
that each of them has a constant velocity as t→ ±∞.

• Such a situation arises if the forces between particles are sufficiently
short-ranged and particles are separated by distances large compared to
the range of forces as t→ ±∞.

• A collision does not necessarily mean the particles come into contact.

• For example (a) two particles may collide, each suffering a deflection in
direction of motion, (b) a particle may disintegrate/decay into two or more
particles, (c) two or more particles may coalesce (merge), etc.

• Evidently, the number of incoming and outgoing particles in a collision
need not be equal.

• Though particle number need not be conserved, collisions may be fruit-
fully treated using the conservation laws of mass, momentum and energy
even without a detailed knowledge of the forces of interaction.

• (Inertial) mass, regarded intuitively as the amount of matter, is conserved
in nonrelativistic mechanical processes: it is neither created nor destroyed.
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• The conservation of momentum and energy should not come as a surprise.
If external forces may be neglected, the total momentum of a system is
conserved. For a system of particles, this is a consequence of Newton’s 2nd

and 3rd laws, with the latter allowing cancellation of interparticle forces in
computing the rate of change of total momentum.

• The total energy of an isolated system is also conserved. However, ki-
netic energy could arise from or be transformed into other types of energy
(potential energy in a spring, chemical bond energy etc.) and we must
account for this.

• Suppose we have a collision among p (‘past’) incoming particles resulting
in f (‘future’) outgoing particles. Let the masses and velocities (as t →
∓∞) of the particles be denoted (mi,vi) for i = 1, . . . , p, p+ 1, . . . , p+ f .

• Then the law of conservation of mass states that

m1 + · · ·+mp = mp+1 + · · ·+mp+f . (65)

• The conservation of linear momentum in a collision is the statement that

m1v1 + · · ·+mpvp = mp+1vp+1 + · · ·+mp+fvp+f . (66)

• The conservation of energy [initial energy = final energy (e.g., kinetic +
potential)] can be rewritten as

p∑
i=1

1

2
miv

2
i =

p+f∑
i=p+1

1

2
miv

2
i +Q. (67)

• The difference Q between initial and final kinetic energies is positive if,
say, kinetic energy is stored in a compressed spring or released as heat.

• It is negative if internal potential energy is converted into kinetic energy,
for instance in the decay of a particle that was initially at rest.

• If Q = 0, the collision is called elastic: kinetic energy is conserved but
may be redistributed among the particles.

• An example of a collision is the elastic ‘2→ 2’ scattering of two particles
which retain their identities (including their masses).

• In this case, conservation of mass is automatic and we have effectively 4
conservation laws (for energy and the three components of momentum).
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• Given the initial velocities v1,v2 , these 4 equations are insufficient to
determine the final velocities v3,v4 , which comprise 6 unknowns. The
conservation equations are underdetermined. Although conservation laws
place restrictions on the final velocities, one needs information on the na-
ture of forces to determine the latter (by solving Newton’s equation of
motion).

• However, in the special case of collisions in 1d, we have 2 conservation
laws and 2 unknown final velocity components and the system of equations
is even-determined.

• If we denote the initial and final velocities by v1, v2 and v′1, v
′
2 , then the

conservation laws for elastic 2→ 2 scattering become

m1v1 +m2v2 = m1v
′
1 +m2v

′
2 ≡ p and

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1v

′2
1 +

1

2
m2v

′2
2 ≡ T. (68)

• Eliminating v′1 = (p−m2v
′
2)/m1 and writing M = m1 +m2 , we get

v′2 = M−1
[
p±

√
p2 −M(m1/m2)(p2/m1 − 2T )

]
= (2m1v1 + (m2 −m1)v2)/M or v2. (69)

• The second solution is the trivial one, where the particles retain their
velocities v′1 = v1, v

′
2 = v2 , this happens if the particles do not interact at

all. In the first, the scattering is nontrivial.

5 Motion in one dimension

• Consider a particle of mass m > 0 moving on the real line R with
instantaneous position x(t). We do this for simplicity, though some of the
features we discuss are valid more generally.

• It is said to possess one degree of freedom since precisely one coordinate
(x) is needed to specify its location.

• A particle moving on a circle or other curve also has one degree of
freedom.

• It is a free particle if it is isolated from physical influences (no ‘forces’
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act on it), in which case Newton’s 1st law states that it must either be at
rest or moving at a constant velocity ẋ = dx

dt to the right or left.

• On the other hand, if a force F acts on it, Newton’s 2nd law says that
the particle accelerates according to the equation of motion mass × accel-
eration = force or mẍ = F .

• To find the trajectory x(t) of the particle, we need to solve this second
order ordinary differential equation subject to a pair of initial conditions,
which could be the initial location and velocity (x(0), ẋ(0)).

• If the force depends only on location F = F (x), then in one dimension,
we may define a potential function such that F (x) = −V ′(x). The latter
is a negative antiderivative or primitive of F :

V (x) = V (0)−
∫ x

0

F (x′) dx′. (70)

• For a conservative force, Newton’s equation becomes mẍ + V ′(x) = 0.
Multiplying by the ‘integrating factor’ ẋ we get

mẍẋ+ V ′(x)ẋ = 0 or
d

dt

(
1

2
mẋ2 + V (x(t))

)
= 0. (71)

Thus, the total energy E = 1
2mẋ

2 + V (x) is conserved. This energy is the
sum of a kinetic energy 1

2mẋ
2 (which accrues from the particle’s motion)

and the previously introduced potential energy V (x).

5.1 Turning points, bound and unbound motion

• Having a conserved energy is helpful in understanding the dynamics.

• Indeed, for a given energy E , the nature of the motion can be deduced
from a graph of the potential V (x).

• On account of the positivity of kinetic energy 1
2mẋ

2 , the motion is con-
fined to the region where E ≥ V (x).
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• This region, when nonempty, may be a union of several intervals/points
(see Fig 2). However, due to ‘potential barriers’ a particle cannot jump
between two disconnected intervals, so we may discuss each in isolation
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Figure 1: Qualitative characterization of motion of a particle in a 1d potential.

• In Fig. 2, the closed interval [x2, x3] (the square brackets mean the
endpoints are included) is a connected set, any two points in it can be joined
by a curve lying in it. On the other hand, the disjoint union [x2, x3]∪{x4}
is disconnected.

• The points x where the energy-E horizontal line intersects the graph
of V (x) are the places where ẋ vanishes momentarily and the energy is
purely potential. They are called ‘turning points’ since the particle turns
around at such a point if reached in finite time [this happens if V ′ 6= 0 at
a turning point].

• For the potential in Fig. 2, the classically allowed region corresponding to
the indicated energy is a union of six connected sets, with initial conditions
determining in which one the motion takes place. From left to right, try
to argue that the qualitative motion is of the following sorts:
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Figure 2: Qualitative characterization of motion of a particle in a 1d potential.

(a) (−∞, x1]: Particle can come in from any point to the left of x1 , collide
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against the barrier at x1 , turn around and escape/scatter to −∞. In
this process, the particle reaches x1 in a finite time. This is indicated
via the square bracket, which means the interval is closed at the x1

end.

(b) [x2, x3]: Particle oscillates with finite time period between the turning
points at x2 and x3 .

(c) x4 : Particle remains at rest at the stable equilibrium point x4 .

(d) [x5, x6): For instance, particle starting at x5 accelerates and moves
rightward but then slows down and takes infinitely long to reach x6 .
Consequently, x6 is not part of the interval, and this is indicated via
the round bracket. By contrast, the turning point at x5 is reached
in finite time, at which the particle comes instantaneously to rest and
reverses direction. [x5, x6) is a ‘closed-open’ interval.

(e) x6 : Particle remains at rest at the unstable equilibrium point x6 .

(f) (x6,∞): Particle can come leftwards from large x, but slows down and
takes infinitely long to reach x6 . Starting from x > x6 with rightward
velocity, particle speeds up and escapes to infinity.

(g) (x1, x2), (x3, x4) and (x4, x5) are forbidden intervals. The particle
cannot be found in any of these intervals since its kinetic energy would
have to be negative.

• While in (b)-(d) the particle is ‘bound’ or ‘confined’, in (a) and (f) the
motion can be unbounded. The foregoing statements about the finite or
infinite time taken to reach turning points can be established by solving
Newton’s equation.

5.2 Time-reversal

• Newton’s equation for motion in a potential mẍ = −V ′(x) is time-
reversal invariant in the sense that if x(t) is a solution, then so is x(−t).
Here, for simplicity, we assume that the solution x(t) exists for all time t.
If it exists for tmin ≤ t ≤ tmax , then the assertion is that x(tmax− t) is also
a solution for 0 ≤ t ≤ tmax − tmin .
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• To see this, suppose we consider the first case where the solution x(t)
exists for all time −∞ < t <∞. Let t̃ = −t. Then d

dt̃
= − d

dt and d2

dt̃2
= d2

dt2 .

So Newton’s equation m d2

dt2x(t) = −V ′(x(t)) implies that

m
d2

dt̃2
x(−t̃) = −V ′(x(−t̃)). (72)

We see that x(−t̃) satisfies the same equation as x(t̃) satisfied [ t̃ is just a
dummy variable, it could be renamed t]. This equation implies that x(−t)
is a trajectory if x(t) was one.

• In other words, a movie of a solution played backwards is also an admis-
sible motion for any conservative force.

• We often indicate the effect of time-reversal succinctly by writing that
under t → −t, x(t) → x(−t), ẋ(t) → −ẋ(−t), ẍ(t) → ẍ(−t), F (x(t)) →
F (x(−t)), V (x(t))→ V (x(−t)) and ẋ2(t)→ ẋ2(−t) etc.

• A force that is linear in velocities (and therefore not conservative) leads to
a Newton equation that is not time-reversal invariant. For e.g., mẍ = −γẋ,
under t → −t becomes mẍ(−t) = γẋ(−t). In this case, x(−t) does not
satisfy the same equation as x(t).

6 Oscillations

6.1 Simple harmonic motion

• The linear or simple harmonic oscillator is one of the simplest of me-
chanical systems with one degree of freedom.

• It describes, for instance, small oscillations of a particle of mass m due
to a linear restoring force (say, due to a spring) F = −kx proportional to
the particle’s displacement x from equilibrium. Here, the positive constant
k (what are its dimensions? ) is called the force constant.

• The negative sign indicates that the force tends to restore the particle
to its equilibrium position rather than push it further away. When the
spring is compressed, it tends to expand; when it is stretched, it tends to
contract.

• As we shall see, a linear restoring force results in oscillatory motion of the
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particle around the point of equilibrium. The specific type of oscillatory
motion that results is called harmonic motion since it involves the sine and
cosine functions of time.

• The force law F = −kx is called Hooke’s law after Robert Hooke who
used it to model such motion. More complicated ‘anharmonic’ forces are
possible, such as a cubic restoring force F = −gx3 for a constant g > 0.

• Newton’s second law F = ma for a particle subject to a linear restoring
force leads to the differential equation

mẍ = −kx. (73)

• This equation could describe oscillations of the extension x of a spring
of force constant k . One end of the spring is held fixed while the particle
of mass m is attached to the other end.

• Suppose `0 is the natural or equilibrium length of the spring while `(t)
is its length as it expands and contracts. Then x = `(t)− `0 . Notice that
the neither `0 nor `(t) enter the equation of motion, which involves only
the departure x from equilibrium length.

• It is conventional to define the parameter ω =
√
k/m (with dimensions

of inverse time or a frequency) so that the EOM becomes ẍ = −ω2x. This
equation is linear in x. This means any linear combination ax1(t) + bx2(t)
of solutions x1,2(t) is again a solution. But how do we solve it?

• If the force were absent (k = 0 and ω = 0), then we have ẍ = 0 and
we may integrate this once ẋ = a and then again x = at + b to find the
general solution.

• Notably, the general solution depends on 2 constants of integration (a
and b): this is generally true of second order ODEs. The integration
constants are to be fixed using initial conditions (such as x(0) and ẋ(0)).
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• The ODE ẍ = −ω2x cannot simply be integrated once since we do not
a priori know the integral of x.

• We can, however, make a guess for the sort of function that may be a
solution. Thus, we try x = ert for some constant r . Putting this in, we get
r2ert = −ω2ert leading to r2 = −ω2 . There are two possibilities r = ±iω .
This leads to two linearly independent solutions x1 = eiωt and x2 = e−iωt .
Taking arbitrary linear combinations of these, we get a 2 parameter family
of solutions x(t) = ãeiωt + b̃e−iωt (ã is pronounced ‘a-tilde’).

• However, the solution must be real since x is a displacement from equi-
librium. This imposes conditions on ã and b̃: ã∗ = b̃ and b̃∗ = ã, i.e., they
are complex conjugates. So if we express the complex number ã in terms
of its real and imaginary parts ã = Ã+ iB̃ , then we must have b̃ = Ã− iB̃ .
Consequently,

x = Ã(eiωt + e−iωt) + iB̃(eiωt − e−iωt) = 2Ã cosωt− 2B̃ sinωt (74)

Let us now denote c1 = 2Ã and c2 = −2B̃ . Then we may express the
solution as

x(t) = c1 cosωt+ c2 sinωt (75)

where c1 and c2 are two real constants of integration.

• This may also be expressed as

x(t) = a cos(ωt+ α) with a ≥ 0 and 0 ≤ α < 2π. (76)

Using cos(ωt+ α) = cosωt cosα− sinωt sinα, we find that

c1 = a cosα and c2 = −a sinα (77)

while
a2 = c2

1 + c2
2 and cosα = c1/a. (78)

• We say that the particle displays simple harmonic oscillations with am-
plitude a =

√
c2

1 + c2
2 and initial phase α = arccos(c1/a), which are deter-

mined by initial conditions. Note that α = − arctan(c2/c1), though this
formula does not uniquely determine α ∈ [0, 2π) since the tangent function
has period π unlike the cosine and sine functions that have periods of 2π .

• Plot the solution for various values of a and α.
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• The material constant ω is called the angular frequency and determines
the time period T = 2π/ω of the small oscillations, which is independent
of amplitude. We say that simple harmonic oscillations are isochronous.

• This isochronous nature is special to a linear restoring force. If the force
were nonlinear (e.g. cubic rather than linear), the motion would still be
periodic, but the time period would depend on amplitude.

• It follows that a stiff spring (larger force constant k) has a smaller time
period T . On the other hand, a particle with larger inertia m would have
a longer time period.

• Newton’s second oder equation mẍ = −kx may also be written as a pair
of first order equations by introducing the momentum p = mẋ. Indeed,
they are given by

ẋ = p/m and ṗ = −kx. (79)

The dynamical variables x and p are called the dependent variables and
t the independent variable. This is a system of two homogeneous linear
ordinary differential equations. Explain the qualifying terms.

• This pair of linear equations can be written in matrix form

d

dt

(
x

p

)
=

(
0 1/m
−k 0

)(
x

p

)
. (80)

• This system is of the form ψ̇ = Aψ where

ψ =

(
x

p

)
and A =

(
0 1/m
−k 0

)
. (81)

This form is nice since it makes it clear why the exponential guess was a
good one.

• Comparing with ẏ = ay whose solution is y(t) = eaty(0), it is natural to
propose that the solution must be given by ψ = eAtψ(0) where eAt is the
matrix exponential, defined via the exponential series

∑∞
n=0(At)

n/n!. One
can check by substituting the exponential series and differentiating term
by term that deAt

dt = AeAt .

• Upon calculating the matrix exponential we get

expAt =

(
cosωt (1/mω) sinωt

−mω sinωt cosωt

)
(82)
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Figure 3: Phase portrait of the harmonic oscillator showing concentric ellipse phase trajectories.

Thus the solution of the ‘initial value problem’ (IVP) for x(t) and p(t)
given x(0) and p(0) is

x(t) = x(0) cosωt+
p(0)

mω
sinωt,

p(t) = −mωx(0) sinωt+ p(0) cosωt. (83)

Verify that this solves the equations ẋ = p/m and ṗ = −kx = −mω2x

and also satisfies the initial conditions.

• The linear restoring force F = −kx arises from the potential V = 1
2kx

2

in the sense that F = −V ′(x). The conserved energy of the linear oscillator
is then

E =
1

2
mẋ2 + V (x) =

1

2
mẋ2 +

1

2
mω2x2. (84)

Introducing the momentum p = mẋ, we may also write the energy as
E = 1

2mp
2 + 1

2mω
2x2 . In this form, the energy is called the Hamiltonian of

the oscillator.

• The phase space of the oscillator is R2 since the initial values of x and
p can each be any real number.

• Sketch a phase portrait for the simple harmonic oscillator. Show that
phase trajectories are clockwise directed ellipses centered at the origin.
What are the semi-axes of these ellipses? The origin x = 0, p = 0 is the
only static solution of the equations of motion and is a one-point trajectory.
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6.2 Simple pendulum

6.2.1 Qualitative description and equation of motion

• Consider a bob of mass m suspended from a massless rigid rod of length
` clamped at a pivot, as shown in Fig. 4. The bob is free to move subject
to Earth’s constant downward gravitational force.

• Suppose the rod is initially deflected from the downward position. The
direction of the rod and the downward pointing acceleration due to gravity
together, define a plane. We will suppose that the initial velocity of the
bob lies in this plane. If this is the case, the motion of the pendulum will
be confined to this plane.

mg
mg cos θ

Tension   

mg sin θ

x

y

Rod length ℓ

θ

Bob mass
   m      

θ

Pivot

Simple Pendulum

arc length
s = ℓ 𝜃

Figure 4: Simple pendulum suspended from a fixed support with massless rod and oscillating in a vertical
plane.

• This system is an idealized simple pendulum, it is used in clocks. A
heavy pendulum bob (wrecking ball) may be used to demolish buildings!
A simple pendulum is also a conceptually interesting system which we will
use to illustrate many concepts of mechanics.

• The qualifier ‘simple’ means the mass is concentrated in the bob, which
is assumed point-like. A compound pendulum is one where the mass is not
point-like but distributed, say over the rod.

• A spherical pendulum is one where the rod is not confined to a vertical
plane. In this case the bob can move on a sphere of radius `, which explains
the name.

• From our experience, we know that the pendulum is in stable equilibrium
when hanging vertically downward, the downward gravitational force being
balanced by the upward ‘tension’ force in the rod. A small push makes the
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bob oscillate through small angles, always remaining close to equilibrium.

• The pendulum is also in equilibrium when it is balanced vertically up-
wards. But this is unstable equilibrium, a small push in either direction
will take the bob far from the point of equilibrium.

• The above are the two time-independent motions of a simple pendulum.

• Let us now consider time-dependent motion. We are aware of two types
of motion of a pendulum.

• (1) Libration is oscillation between a pair of turning points on either
side of the vertical. In a sense, the bob is bound or trapped around its point
of stable equilibrium.

• (2) Rotation ensues if the energy or initial speed of the bob is above
a critical value. The bob then rotates around the pivot, in general at a
nonuniform rate. It moves slower at the top and faster at the bottom. In
rotational motion, the bob is not trapped near its point of stable equilib-
rium and the motion does not have any turning points.

• The pendulum has one degree of freedom, the (counterclockwise) angle
of deflection θ from its stable equilibrium position. θ can be chosen to
take values in the interval 0 ≤ θ < 2π . θ = 2π corresponds to the same
angular configuration as θ = 0 (bob hanging vertically downwards).

mg
mg cos θ

Tension   

mg sin θ

x

y

Rod length ℓ

θ

Bob mass
   m      

θ

Pivot

Simple Pendulum

arc length
s = ℓ 𝜃

Figure 5: Simple pendulum suspended from a fixed support with massless rod and free to oscillate in a
vertical plane. r̂ is radially outward, θ̂ points azimuthally counterclockwise. ẑ is out of the plane.

• The downward gravitational force −mgŷ is resolved into a radial com-
ponent mg cos θ and a tangential component mg sin θ as shown in Fig. 5.

• Newton’s second law in the radial direction is T −mg cos θ = m`θ̇2 . The
quantity on the right is the mass × the centripetal acceleration while T
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is the radially inward tension in the rod. T must vary with angle and is
greatest when θ = 0 since the angular speed θ̇ is largest at the bottom
and mg cos θ is also maximal when θ = 0.

• The tangential component of the gravitational force tends to reduce the
angle of deflection and causes the bob to accelerate towards its equilibrium
position.

• Suppose s = `θ is the arc length corresponding to a counterclockwise
deflection angle θ . Then the tangential velocity of the bob is ṡ = `θ̇ and
its acceleration is `θ̈ since ` is constant.

• Newton’s second law then says that m`θ̈(t) = −mg sin θ(t). Thus, we
arrive at the equation of motion

θ̈(t) = −(g/`) sin θ(t) = −ω2 sin θ(t) where ω =
√
g/`. (85)

• ω has dimensions of a frequency. In this equation, t is called the inde-
pendent variable and θ is called the dependent variable (since it depends
on t).

• Since there is no radial motion, the radial Newton equation simply fixes
T once the angular motion is determined. Thus the radial and tangential
EOM form a sort of ‘triangular’ system.

• The mass of the bob cancelled out, so the time-dependence of θ , and the
motion of the pendulum is independent of m; it can depend only on the
constant (angular) frequency ω .

• In particular, the time period of oscillation must be independent of
the mass (no matter how large the oscillation is). This was discovered
experimentally by Galileo around 1602.

• The equation of motion θ̈ = −ω2 sin θ for the dependent variable θ is
second order in time but very nonlinear due to the sin θ on the RHS (sin θ
can be thought of as an infinite series in powers of θ).

• Even without solving it explicitly, we may determine many qualitative
features of the motion.
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6.2.2 Energy, angular momentum

• To find a conserved energy, we use the method of an integrating factor.
Multiplying m`θ̈ = −mg sin θ by the integrating factor ṡ = `θ̇ we get

`θ̇m`θ̈ = −`θ̇mg sin θ or
d(m`2θ̇2/2)

dt
=
d(mg` cos θ)

dt
. (86)

Physically, ṡ is the tangential component of velocity and multiplying it
with the tangential component of force gives the work done by the tangen-
tial force per unit time.

• Integrating, we get a constant of integration that we denote E − E0 .
Thus, we have a conserved quantity

E =
1

2
m`2θ̇2 −mg` cos θ + E0. (87)

• We notice that in the state of stable equilibrium, i.e., when θ = 0 and
θ̇ = 0, E = −mg`+ E0 .

• It is convenient to choose the constant of integration so that the energy
vanishes in the state of stable equilibrium. Thus, we choose E0 = mg`.

• With this choice, our conserved total energy is

E =
1

2
m`2θ̇2 +mg`(1− cos θ). (88)

• The first term is the kinetic energy T = 1
2m`

2θ̇2 .

• The potential energy is V (θ) = mg`(1− cos θ). We have chosen to write
the constant of integration in such a way that V = 0 when the bob hangs
downwards (θ = 0).

• The extrema of V correspond to equilibria where the pendulum is sta-
tionary. Now V ′(θ) = mg` sin θ = 0 when θ = 0 or π (modulo 2π),
corresponding to the bob pointing vertically downwards or upwards.

• As the figure shows, the former is a local minimum of V (stable equilib-
rium) while the latter is a maximum (unstable equilibrium).

• Angular momentum. Suppose r = `r̂ is the radius vector of the bob
with pivot as the origin. Its velocity is v = ṡθ̂ where s = `θ . Thus, its
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Figure 6: Potential V (θ) (for m = g = ` = 1) showing stable equilibrium at θ = 0 and unstable one at
θ = ±π as well as examples librational and rotational energies.

linear momentum is
p = mṡθ̂ = m`θ̇θ̂. (89)

Its angular momentum about the pivot is therefore

L = r × p = m`2θ̇r̂ × θ̂ = m`2θ̇ ẑ ≡ pθẑ. (90)
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(a)

• The angular momentum component pθ = m`2θ̇ is positive for coun-
terclockwise motion and negative for clockwise motion. For librational
motion, pθ must keep changing sign along a trajectory. In the rotational
phase pθ must have a definite sign at all times: positive for counterclock-
wise rotation and negative for clockwise rotation.

• The configuration space of the pendulum is a circle, denoted S1 .
Points on the circle are parametrized by the deflection angle θ which is
defined modulo 2π . Specifying θ tells us the position of the bob.

• The phase space of the pendulum is the set of all states of the pendulum:
all possible ordered pairs (θ, θ̇) or equivalently (θ, pθ). Since pθ can take
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any real value, the phase space is the Cartesian product S1×R. This space
is an infinite cylinder.

6.2.3 Oscillation through small angles: harmonic motion and clocks

• At low energies E & 0, the bob always remains close to its point of
stable equilibrium (small oscillations, |θ| � π/2) and we may approximate
sin θ ≈ θ .

• The EOM θ̈ = −ω2 sin θ (85) may be approximated by the linear equa-
tion for simple harmonic motion θ̈ = −ω2θ .

• The general solution is

θ(t) = A cosωt+B sinωt (91)

with A and B dimensionless constants of integration. They are related to
the initial angle and initial angular velocity by θ(0) = A and θ̇(0) = Bω .

• Putting A = θmax sinφ and B = θmax cosφ, the solution is

θ(t) = θmax sin(ωt+φ) with θ(0) = θmax sinφ and θ̇(0) = ωθmax cosφ.
(92)

• It is clear that the deflection angle is a sinusoidally varying function of
time.

• The maximum angle of deflection θmax is called the ‘amplitude’ of small
oscillations.

• Of course, for the small angle approximation to hold, θmax must be small,
say, compared to π/2. (How small depends on the accuracy desired.)

• The time period of these small oscillations T = 2π/ω = 2π
√
`/g is not

just independent of the bob’s mass, but also independent of the energy or
amplitude θmax .

• We say that a pendulum executing small oscillations is isochronous,
as discovered experimentally by Galileo. This is a feature that allowed
pendulums to be used as the most accurate clocks (‘chronometers’) from
the mid 1600s (Christiaan Huygens, 1656) to the early 20th century. The
best pendulum clocks had an accuracy of about a second per day.
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• Pendulums were also used as gravimeters, to measure the variation of
the acceleration due to gravity over the surface of the Earth. Indeed, it was
found that pendulums of the same length lose time (the pendulum clock
‘runs slow’) near the equator and gain time (‘runs fast’) at high latitudes.

• It was inferred that the acceleration due to gravity g is smaller near
the equator and grows with latitude. This is explained by the fact that
the Earth bulges out near the equator and is flattened at the poles. It
may be modeled as an ellipsoid of revolution called an oblate spheroid or
oblate ellipsoid. The difference between the equatorial (6378km) and polar
(6357km) semiaxes is about 20 km.

• It was also found empirically that even if the oscillations are not small,
the motion is still periodic, though the time period grows with amplitude
θmax .

• However, the nonlinear equation of motion θ̈ = −ω2 sin θ cannot be
solved in general using elementary functions like polynomials or trigono-
metric or exponential functions of time. The solution defines a new class
of functions called elliptic functions.

7 From Kepler’s laws of planetary motion to Newton’s law of
gravitation

7.1 Kepler’s laws of planetary motion

• Based on the Danish astronomer Tycho Brahe’s naked eye observations
of planetary positions (accurate to better than 0.01◦), the German mathe-
matical astronomer Johannes Kepler formulated (1606-1619) three laws of
planetary motion around the Sun:

1. Planetary orbits are ellipses with the Sun at a focus. In particular,
each orbit lies on a plane, the ecliptic plane of the planet.

2. The radius vector connecting the Sun to a planet sweeps out equal
areas in equal times (‘constant areal speed’).

3. The square of the period of revolution is proportional to the cube of the
semimajor axis, with a proportionality constant that is approximately
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the same for all planets

R3 = KT 2 where K ≈ 7.5×10−6(AU)3/(day)2 = 3.4× 1018 m3/s2

(93)
is ‘Kepler’s constant’. An astronomical unit AU is roughly the mean
Sun-Earth distance, approximately 150 million kilometers. By con-
sidering the case of the Earth, we may estimate the numerical value
K ≈ 1/3652 (AU)3/(day)2 .

• In what follows, we will address the so-called inverse problem of deducing
Newton’s universal inverse-square force law of gravitation from Kepler’s
laws and Newton’s second law F = ma.

• The general problem of deducing a 3d force field F (r) for the force felt
by a planet in the neighborhood of the Sun is quite hard.

• We will nevertheless find a solution to this problem

1. by considering special cases (circular orbits),

2. by making some physically justified simplifying assumptions (that the
force is central) and

3. by using some general features of Newtonian mechanics (angular mo-
mentum conservation in a central potential).

7.2 Ecliptic plane, polar coordinates and conservation of angular momentum

• To begin with, we set up a coordinate frame.

• In view of Kepler’s first law, the planet’s orbit lies on a plane (the ecliptic
plane), which we take to be the x-y plane. [The word ecliptic is related to
eclipses rather than to ellipses!]

• We will find it useful to define the z axis so that xyz becomes a right-
handed system. The z -direction will be helpful to discuss angular momen-
tum.

• We use spherical polar coordinates (r, θ, φ) for the planet’s location r =
(x, y, z) with the Sun at the origin (see Fig. 8):

z = r cos θ, x = r sin θ cosφ and y = r sin θ sinφ. (94)
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Figure 8: Spherical polar coordinates with the Sun at the origin and the planet moving on the x -y
ecliptic plane.

• Both bodies are treated as point particles as they are small compared to
the observed sizes of orbits. The Sun’s radius is 7× 108m while the mean
Sun-Earth distance is 1.5× 1011m.

• Since the planet moves on the x-y plane, z = 0 and θ ≡ π/2 and both
the position and momentum vectors r,p of the planet lie in the x-y plane.

• It follows that the angular momentum about the origin L = r×p must
point in the ẑ or −ẑ direction.

• Since planets are observed to go around the Sun without switching di-
rection, the direction of angular momentum cannot change, it must point
along ẑ or −ẑ at all times.

• We will denote the magnitude of angular momentum by l ,
√
L ·L = l

and its z -component by L · ẑ = lz .

• In spherical polar coordinates, the angular momentum can be expressed
as L = lzẑ = (xpy − ypx)ẑ = mr2 sin2 θφ̇ ẑ . Since θ = π/2, lz = mr2φ̇.

• Now, Kepler’s second law may be used to deduce that the magnitude of
angular momentum is constant in time.

• Indeed, as shown in Fig. 9, the infinitesimal area (dAr) swept out by
the line joining the Sun to the planet in a small time dt while the planet’s
angular position changes dφ is dAr ≈ 1

2r rdφ.

• Dividing by dt and taking the limit, the constancy of the areal speed

dAr

dt
=

1

2
r2φ̇ =

lz
2m

(95)

implies angular momentum is conserved.

• We ignore here the small change in area that results from a change in r ,
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base by the circular arc length is 1

2r(t)dφ× r(t) cos(dφ/2). For small dφ , cos(dφ/2) ≈ 1.

for this area, given approximately by the shaded triangle in Fig. 9 is 2nd

order in infinitesimals, ∝ dφ dr . When this is divided by dt and we let
dr, dφ, dt→ 0, this term vanishes, unlike the leading term given in (95).

• A force field F (r) where r is the radius vector from the Sun to the planet
is called central if it points radially everywhere and has a magnitude that
depends only on the radial distance r .

• It is an independent mathematical fact of Newtonian dynamics (follow-
ing from Newton’s second law) that angular momentum is conserved in
a central force field. This suggests that the gravitational force is central
F = −f(r)r̂ (with the negative sign for attraction).

• We now wish to use Kepler’s 3rd law to fix f(r) to the extent possible.

7.3 Newton’s inverse square law of gravitation

• The inverse-square nature of the force is guessed from Kepler’s third law
T 2 = r3/K .

• To see this, we first note that the eccentricity of several planetary orbits
is fairly small (ε = .02 for the Earth) and they approximately describe
uniform circular motion around the Sun.

• Kepler’s 3rd law certainly applies to these planets and let us see what it
implies.

• Consider a planet such as the Earth moving uniformly around a circle
of radius r at constant angular speed ω . It takes a time T = 2π/ω to go
round once. Its linear speed is v = 2πr/T = rω .
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• To find its acceleration we write its position vector in the x-y plane
as r = (r cosωt, r sinωt), from which we find its velocity v = ṙ =
ωr(− sinωt, cosωt). Its acceleration is a = r̈ = −ω2r(cosωt, sinωt). We
see that a = −ω2r = −(v2/r)r̂ : the acceleration is directed radially in-
wards, and therefore called centripetal.

• Newton’s 2nd law requires the (radially inward) centripetal acceleration
times (inertial) mass of the earth to equal the inward gravitational force.
This gives

−me
v2

r
r̂ = −f(r)r̂ with v2 =

(2πr)2

T 2
=
K(2πr)2

r3
⇒ f(r) =

4π2Kme

r2
.

(96)

• Besides its inverse-square nature, the above gravitational force on the
Earth due to the Sun is proportional to the Earth’s mass me (since K is
independent of the planet) so that the Earth’s acceleration is independent
of its mass.

• Newton postulated that this must be true also of the force felt by the
Sun due to the Earth (his 3rd law) and concluded that K ∝ ms . Thus, we
guess the universal (both terrestrial and celestial) law of gravitation

F = −Gmsme

r2
r̂ where G =

4π2K

ms
= 6.67× 10−11 Nm2/kg2. (97)

• Remark: In this ‘derivation’ of Newton’s law of gravitation, me was
the inertial mass of the Earth, since it came from the mass × acceleration
term in Newton’s 2nd law. By Newton’s 3rd law argument, ms would
then have to be the inertial mass of the sun. So one may wonder where
there is room for gravitational masses that may be distinct from inertial
masses in Newton’s law of gravity. This apparent lack of room is because
we assumed that Kepler’s constant K is independent of the planet. This
is analogous to Galileo’s assertion that all bodies fall the same way when
dropped from the same height above the Earth’s surface. In fact, K is not
exactly the same for all planets. To incorporate this dependence on the
planet we could write Kme = kmg

e where k is independent of the planet
and mg

e is a property of the planet which we choose to call its gravitational
mass. Then, by Newton’s third law we would write k = k′mg

s where mg
s

is the gravitational mass of the Sun and k′ is a constant independent of
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both bodies. Finally, denoting 4π2k′ by the symbol G we get Newton’s
law for the gravitational force of the Sun on the Earth with magnitude
Gmg

sm
g
e/r

2 . [As it turns out, the dependence of K on planet is not due to
a difference between gravitational and inertial masses and can be explained
by other effects that we have ignored: effects of other planets, finite sizes
of sun and planets etc.]

• We will often use the abbreviation α = Gmems . Note that me ≈ 6×1024

kg and ms ≈ 2 × 1030 kg. Though we will not do it here for lack of
time, Kepler’s first law on elliptical orbits may now be derived by solving
Newton’s equation of motion using his universal law of gravitation.

• An important feature of the gravitational force is that it is derivable
from the gravitational potential V (r) = −α/r :

F = − α
r2
r̂ = −∇r

(
−α
r

)
= −∇rV (r). (98)

• Here ∇r is the vector gradient. If r = (x, y, z) are the Cartesian com-
ponents of the position vector, then ∇r = ( ∂

∂x ,
∂
∂y ,

∂
∂z).

• The gravitational force is called central since it points radially and its
magnitude depends only on the radial distance. The corresponding po-
tential V (r) depends only on the distance from the origin and is called a
central or spherically symmetric potential.

• In obtaining the 1/r potential from Kepler’s laws, we have in effect solved
an inverse problem, i.e., to deduce a potential from features of trajectories.
More specifically, we deduced a potential from the period of oscillations
that it supports.

• To solve such a problem in general is very difficult, and Isaac Newton
and his contemporaries like Edmond Halley and Robert Hooke are lucky
to have succeeded in this case of central importance.

• The lunar perigee problem. It took time for Newton’s inverse-square
law of gravitational force to be tested and widely accepted. Newton (1643-
1727) showed that it did give the observed elliptical orbits of some planets
and comets.

• However, a difficulty arose in applying it to lunar motion. The moon’s
approximately elliptical orbit around the Earth was observed to precess [it
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isn’t quite closed or periodic]. The lunar perigee (closest approach to the
Earth) rotates by 40◦ of arc per annum.

• This precession was believed to be due to the Sun’s effect on the Earth-
Moon system. This leads to the famous three-body problem of celestial
mechanics.

• Newton tried to estimate the motion of the lunar perigee due to the
Sun’s effect, but could account for only about half of it.

• There were lingering doubts about whether the 1/r2 force law was correct
and Alexis Clairaut even proposed a small 1/r3 correction to it. A lively
competition ensued among Euler, Clairaut and d’Alembert to develop a
theory of solar perturbations to the Moon’s orbit. [See S Bodenmann, The
18th-century battle over lunar motion, Physics Today, 63(1), 27 (2010)
doi: 10.1063/1.3293410].

• Eventually, Clairaut (1759) was able to use the purely inverse-square
force law to account for 85% of the motion of the lunar perigee using a
third order perturbative treatment of the Sun’s effect.

• This and subsequent work on other solar system trajectories led to
widespread acceptance of Newton’s laws of motion and gravity.

8 Motion in uniformly accelerating frames

8.1 Uniformly accelerating systems

• Having dealt with frames moving at a constant velocity with respect to
an inertial frame, we now progress to the nature of dynamics as observed
from a frame S ′ that is uniformly accelerating at the rate A relative to an
inertial frame S . This is the first step in the study of dynamics in a non-
inertial frame. One could subsequently consider a frame that accelerates
nonuniformly or rotates.

• The acceleration of a particle in S ′ is related to that in S by a′i = ai−A.
Multiplying by mi ,

mia
′ = mia−miA = F −miA. (99)

We used the fact that S is inertial to write mia = F .
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• We will call F ′ = mia
′ the (apparent) force on the particle in the

accelerated frame. We assume that the inertial mass of the particle is the
same in both frames.

• Unlike in a frame that moves uniformly, the force seen in a noninertial
frame is generally not the same as in an inertial frame.

• The apparent force in S ′ may be expressed as F ′ = F +Ffict where the
fictitious force is given by Ffict = −miA.

• Notice that this fictitious force points oppositely to the direction of
acceleration A.

• Moreover, the fictitious force on a particle Ffict is uniform, i.e., indepen-
dent of location and proportional to the particle’s inertial mass.

• This is similar to the gravitational force mgg on a particle of gravitational
mass mg on the Earth’s surface, which is roughly uniform and proportional
to the gravitational mass. However, Ffict arises from the acceleration of
the frame rather than from interactions between particles, which explains
the name fictitious.

• Example: Fictitious force in an accelerating car. A small bob of
inertial mass mi is suspended by a stretched string from the roof of a car
that accelerates at the rate A. The situation is viewed from the inertial
frame of the road as well as from the accelerated frame of the car. Viewed
from either frame, the string is seen to settle into a configuration where it
hangs at a nonzero angle relative to the vertical, with the bob displaced
towards the back of the car. The angle that the string makes with the
vertical as well as the tension in the string are found to be the same in
both frames and given by

θ = arctan(miA/mgg) and T =
√
m2
gg

2 +m2
iA

2. (100)

Obtain these results by working (a) in the inertial frame of the road and
(b) in the accelerated frame of the car.

• For instance, in the inertial road frame, the bob accelerates in the direc-
tion of motion of the car and the vertical component of the string tension
is balanced by the weight of the bob. On the other hand, in the accelerated
frame of the car, the bob is at rest and the tension in the string is balanced
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by the resultant of the weight of the bob and the fictitious force.

8.2 Principle of equivalence

•We have seen that Newton’s 2nd law in a frame that accelerates uniformly
at the rate A is the same as that in an inertial frame, provided we introduce
a fictitious force Ffict = −miA on each particle in the accelerated frame.

• Aside from the appearance of mi and mg , the fictitious force due to a
frame’s acceleration A is similar to the gravitational force due to a uniform
acceleration due to gravity g = −A.

• Einstein posed the question of whether the two are distinguishable in
principle. For instance, in an inertial frame in which a local gravitational
field is present (with constant acceleration due to gravity g), a free particle
of mass mg is subject to a force F = mgg .

• Now, suppose this particle is isolated far from all physical interactions
and is observed in a frame that is uniformly accelerated at the rate A =
−g . In this frame, it is subject to a fictitious force Ffict = −miA = mig .
Einstein asked whether it is possible for an observer in either of these
frames to physically distinguish between these two situations.

• To make the question more concrete, he proposed the following thought
(‘gedanken’) experiment.

• Suppose a man is on an elevator at rest in a uniform gravitational field
of magnitude g that points downwards. If he releases a ball from rest, it
falls downwards with an acceleration a = (mg/mi)g .

• On the other hand, suppose the same elevator is far from other physical
interactions and accelerates upwards at the rate a = g . If the man releases
the ball in the same manner in this accelerating elevator, it accelerates
downward at the rate g .
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• Now, if mi = mg , then as far as the man is concerned, the two situations
are identical and he has no way to distinguish between an accelerating
elevator and a gravitational field.

• This may be regarded as a 20th century version of Galileo’s assertion from
the 17th century that is not possible to dynamically distinguish between
an inertial frame and one that is moving at constant velocity relative to it.

• Freely falling elevator. Another way to look at the equivalence be-
tween a uniform gravitational field and an accelerating frame is to consider
an elevator that is freely falling in a uniform gravitational field.

• The elevator, the man and the ball accelerate downwards at the rate
g . If the man releases the ball, it would remain suspended as though the
elevator is motionless far from other physical interactions.

• If mi = mg , then the force of magnitude mgg due to the local gravita-
tional field is exactly cancelled by the upward fictitious force of magnitude
mig due to the downward acceleration of the elevator. Einstein concluded
that if inertial and gravitational masses are the same, then an observer in
the elevator, cannot determine whether the elevator is falling in a uniform
gravitational field or is isolated in outer space.

• There is strong experimental evidence that inertial and gravitational
masses can be taken to be equal mi = mg .

• The Principle of equivalence asserts that the inertial and gravita-
tional masses of any body are numerically equal mi = mg and that it is
not possible to distinguish locally between a uniform gravitational field
with acceleration g (observed from an elevator that is at rest or moving
uniformly relative to an inertial frame) and a coordinate system (eleva-
tor) that accelerates at the rate A = −g . The restriction to ‘local’ is to
avoid inhomogeneities in real gravitational fields over large distances and
the possibility of the man looking out of the elevator etc.

• The principle of equivalence lies at the foundation of Einstein’s theory
of gravitation.
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9 Special theory of relativity

9.1 Difficulties with Newtonian mechanics

• Newton, in his formulation of mechanics, in effect, postulated that all
observers, irrespective of their state of relative motion could synchronize
their clocks to a common time and could agree about the simultaneity of
a pair of events.

• In the late 1800s, Ernst Mach criticized this postulate as it was not
backed by an examination of the physical processes involved in measuring
times using clocks carried by various observers

• Nevertheless, Newton’s assumption about time remained at the founda-
tion of mechanics for nearly 200 years, since its consequences were largely
in agreement with empirical observations.

• With the benefit of hindsight, we may say that the Newtonian assump-
tion is a good approximation as long as speeds (of particles or of observers)
are much less than that of light. In effect, Newton had assumed that light
traveled infinitely fast. It is perhaps not a surprise that difficulties in the
application of Newtonian mechanics first arose in matters concerning light.

• First, by the 1800s there was strong empirical evidence that light traveled
at a large but finite speed ≈ 3× 108 m/s in vacuum.

• Next, Maxwell’s equations that had been hugely successful in under-
standing electricity and magnetism predicted the existence of electromag-
netic waves, which included light. The equations did not seem to refer to
any medium and the speed of the wave was a constant (denoted c) which
did not seem to depend on how the waves were produced or observed (c
did not depend on the motion of the source or observer).

• Other types of waves known at that time, such as waves in a stretched
string, sound, elastic waves in a solid and water waves were traveling dis-
turbances in a medium like air or water. Moreover, the observed speed of
sound depended on the motion of the observer through the medium.

• Based on the analogy with sound (and the overwhelming success of me-
chanics in describing waves and other natural phenomena) it was assumed
that light waves too must travel in an as yet unobserved medium, which
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was called ether. Ether had to have some peculiar properties: (a) to allow
light to travel very fast, it had to be minimally deformable (i.e., very rigid,
since sound travels faster in a solid than in a gas) but (b) it had to be very
rare to have evaded detection through its effect on the motion of celestial
or terrestrial bodies.

• Michelson set out to detect the effect of the motion of an observer (rel-
ative to the proposed ether medium) on the observed speed of light.

• Using an interferometer, he (in 1881) and later he along with Morley (in
1887), obtained a null result: the speed of light was the same for a variety
of observers moving differently through the ether (the orientation of the
arms of the interferometer and motion of the Earth altered the direction
of motion through the proposed ether). This seemed to be at odds with
expectations based on Newtonian mechanics.

• Attempts were made to explain this null result, but often seemed con-
trived and typically introduced other complications. For instance, FitzGer-
ald and Lorentz proposed that motion through the ether produced just the
right contraction of one arm of the interferometer to cancel the effect of
the change in speed of light due to the relative motion.

9.2 Postulates of special relativity

• In 1905, Einstein brought clarity to this confusing situation when he
introduced his special theory of relativity.

• Einstein said he was not influenced by the null result of Michelson and
Morley, as he had already come to a similar conclusion based on H Fizeau’s
1851 experiments that attempted to detect the effect of a moving medium
(water and air) on the speed of light. Fizeau found an unexpectedly small
effect in water and no effect in air.

• Mach’s critique of Newtonian mechanics and Maxwell’s electrodynamics
significantly influenced Einstein’s thinking.

• Einstein’s insight was that the principles of Newtonian mechanics had to
be revised so as to make mechanics compatible with Maxwell’s electrody-
namics and avoid the contradictions in interpreting phenomena involving
light.
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• Special relativity is based on a pair of postulates: the principle of relativ-
ity and the constancy of the speed of light. The qualifier ‘special’ is meant
to convey that the theory deals with physical phenomena observed from in-
ertial frames of reference. Relativity refers to the fact that certain concepts
such as simultaneity of events or lengths of rods, which were considered
absolute in Newtonian mechanics, are defined relative to an observer.

• The principle of relativity goes back to Galileo, who had proposed
it in the context of mechanics. Galileo had pointed out that there is no
mechanical way of distinguishing between an inertial frame and another
frame that is in uniform motion relative to it. In particular, the concept
of a frame that is ‘absolutely at rest’ is not meaningful in mechanics.

• Einstein argued that this principle must apply to all the laws of physics:
if a law holds in one inertial frame, it must also hold in any other frame
moving at a constant velocity relative to it.

• Accepting the principle of relativity meant discarding the ether hypoth-
esis since the latter would mean that there is a distinguished inertial frame
in which the ether is at rest and in which Maxwell’s equations are valid.

• The failure to detect motion relative to the ether suggested that it was
more economical to discard the ether concept while retaining the principle
of relativity.

• Moreover, Maxwell’s equations predicted a universal speed for light,
without reference to any medium, so there was no role for ether in electro-
magnetism (though Maxwell erroneously believed in it). This brings us to
the 2nd postulate of special relativity.

• The speed of light in vacuum is the same constant c in all inertial frames.
Since Maxwell’s theory seemed to predict a constant speed of light inde-
pendent of the motion of the source or observer and without reference
to any medium, Einstein postulated that the speed of light must be the
same for all inertial observers. In particular, the speed of light is the same
irrespective of the direction in which the light propagates.

• In other words, the analogy with sound waves, which require a medium
for their propagation and whose speed depends on the motion of the ob-
server and source, has its limitations.
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• These postulates seemed to be the simplest way to accommodate the
available theoretical knowledge (constancy of speed of light in Maxwell
theory, absence of distinguished frame in Galilean relativity) and experi-
mental/observational data (observer independence of speed of light, ether
going undetected).

• In addition to these postulates, Einstein was guided by what one might
call the correspondence principle: the relativistic generalization of the laws
of mechanics and rules for transforming physical quantities between inertial
frames must reduce to those of Newton and Galileo when speeds are small
compared to that of light.

• Thus, although Galileo’s principle of relativity is postulated to apply to
all the laws of physics, the Galilean transformation formula (t′ = t, r′ −
r − vt) telling us how coordinates transform between frames moving at
relative velocity v needs to be revised.

• The name correspondence principle was introduced by Neils Bohr in
postulating that the laws of quantum mechanics must reduce to those of
classical mechanics in the semiclassical limit of large quantum numbers,
where appropriate physical quantities with dimensions of action (angular
momentum) have numerical values that are large compared to Planck’s
constant h = 6.6× 10−34 Js.

9.3 Incompatibility of Galilean transformations with constancy of the speed
of light

• To describe events, an observer finds it convenient to set up a coordinate
system or frame of reference S . For simplicity, we will consider Cartesian
coordinate systems for space consisting of an origin and a right-handed
frame of x, y and z axes. In Newtonian mechanics, any event is then spec-
ified by the time t at which it occurs, along with the (x, y, z) coordinates
of the place where it occurs.

• Galilean transformations. Now consider an inertial frame of reference
S : (t, x, y, z). If Galileo’s principle of relativity applies to all physical
phenomena, then the laws of physics must take the same form in S as
they do in a frame S ′ moving uniformly relative to S . Let us denote the
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coordinates in frame S ′ by (t′, x′, y′, z′). How are the coordinates of an
event referred to the two systems related?

• In Newtonian mechanics, one can define a common time t for all ob-
servers, so t′ = t. For simplicity, we will suppose that S ′ and S coincide
at t = 0 and that S ′ moves at speed v to the right along the x direction.

S S’
y y’

x x’
𝑣

Lorentz boost

z z’

O O’

• Then the coordinates of the event at (t, x, y, z) when viewed from S ′ are
given by

t′ = t, x′ = x− vt, y′ = y, z′ = z. (101)

This transformation of coordinates is called a Galilean transformation
(more precisely a Galilean boost by velocity vx̂).

• We observed in §2 that Newton’s second law for two gravitating masses
is invariant under such a Galilean transformation.

• Now, let us examine how the speed of a light signal behaves under a
Galilean boost. We suppose that at t = 0, a pulse of light is emitted from
the origin of S and travels along the x-axis at the speed c.

• Then, at time t, the light pulse is located at x = ct. When viewed from
frame S ′ , the location of the light pulse at time t is given by x′ = ct−vt =
(c− v)t. Thus, in frame S ′ , the light pulse moves at speed dx′

dt′ = c− v .

• However, this is not consistent with the observed universality of the speed
of light. Thus, Galilean transformations are not compatible with Einstein’s
postulate that the speed of light is the same for all inertial observers.

9.4 Synchronization of clocks & simultaneity

• Synchronization of clocks. Einstein prefaced his special theory of rel-
ativity with a note on synchronization of clocks. Each observer is provided
with an identical clock to keep time. To compare measurements of time by
the different observers, it is helpful if their clocks are synchronized, i.e., if
they agree on the time of a single event.
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• In Newtonian mechanics, if a flash of light goes off somewhere, then it ar-
rives instantaneously at the locations of all observers, whose synchronized
clocks all assign the same time to the event. This is a reasonable approxi-
mation if the speed of light is very large compared to that of observers and
bodies under consideration.

• Synchronization of clocks by the radar method. In special rela-
tivity, the speed of light is finite. Einstein proposed a ‘radar’ scheme by
which all inertial observers (at rest relative to one another) would assign
the same time to any given event. Such a system of clocks is said to be
synchronized and is of practical value, for instance in coordinating times
across the internet.

• Suppose A and B are a pair of observers with identical clocks. Suppose A
sends a light signal at time tA (according to his clock) towards B . Suppose
B receives this light signal at a time tB on her clock. To synchronize A’s
clock with that of B , B immediately sends a light pulse back (with a
message giving the time tB ), which is received by A at a time tA + 2∆.

tA+2Δ

A B

tA+Δ

tA

tB

A B

tE tE
E

(ii)(i) time

space

Figure 10: Space-time diagrams of two inertial observers A and B who are at rest relative to
each other. Time increases upwards while the horizontal direction is space. The trajectories of
A and B (‘world lines’) are upward-directed solid straight lines. World lines of light signals are
indicated by dashed lines inclined at 45◦ since we work in units where c = 1. (i) A synchronizes
his clock with that of B by sending and receiving a light signal and calibrating his clock to read
tB at the time tA + ∆. (ii) Having synchronized their clocks, both observers assign the same
time to any event E .

• Now, the clocks are synchronized if A shifts the time displayed by his
clock in such a way that tB = tA + ∆ (see Fig. 10). Having synchronized
them, both clocks will assign the same time to any event E , as shown in
Fig. 10.

• Note that if B is moving relative to A then this synchronization cannot
be maintained. More on this soon.

• Note: when we speak of light, we do not restrict to visible light. We
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may use electromagnetic waves of any frequency (X-rays, microwaves etc.)
as they all travel at the speed of light. We use light instead of electrons or
protons since light signals have a common speed for all inertial observers,
which simplifies the discussion. Electrons of different kinetic energies have
different speeds and their speed depends on the observer.

• Relativity of simultaneity. Two events E1 and E2 occur simultane-
ously for observer A if they occur at the same time on A’s clock. The
above radar method of synchronization ensures that if B is at rest rel-
ative to A, then E1 and E2 are simultaneous for B as well. However,
the space-time diagram of Fig. 11 and the example that follows show that
observers in relative motion need not agree on the simultaneity of events.
Thus, synchronization of clocks of observes in relative motion is in general
not possible.

A

E2
E1

B

E

time

space

Figure 11: Relativity of simultaneity. In this figure, we use units where c = 1 so light rays travel
along straight lines inclined at 45◦ . Observer B moves at a uniform velocity < c relative to
inertial observer A , so their world lines (solid) are inclined at an angle less than 45◦ . Time, as
measured on their clocks increases upwards along their world lines. They meet at the event E ,
when both send light signals (dashed) to events E1 and E2 , which are then sent back. Events
E1 and E2 are simultaneous according to A (as he receives the returned signals at the same
time on his clock) but not as reckoned by B . B says that E2 precedes E1 as she receives the
reflected light signal from E2 before the one from E1 .

• A guard stands in the middle of an empty railway wagon of length
2L and switches on his lantern sending out a light pulse in all directions
propagating at speed c. In the rest frame of the wagon, the light pulse
arrives simultaneously at the left and right ends A and B of the wagon
after a time L/c.

• Now let us view these events from a frame that is moving to the right at
speed v relative to the railway wagon. In this frame, the wagon moves to
the left with speed v . Though the light pulse travels at the same speed c
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in this frame, it has to cover a distance shorter than L to reach the right
end and a distance longer than L to reach the left end. Thus, in this frame,
the pulse does not arrive simultaneously at the two ends of the wagon!

87


	Primer on vectors, polar coordinates and kinematics
	Vectors, dot and cross product
	Position coordinates and velocity and acceleration vectors
	Uniform circular motion
	Nonuniform circular motion
	Rotating vectors
	Integration of kinematical equations
	Plane polar coordinates
	Spherical polar coordinates
	Taylor approximation
	Some vector calculus

	Newton's laws and forces
	Time, light, simultaneity, space & time intervals, masses.
	Degrees of freedom, instantaneous configurations, trajectories
	Newton's 1st law
	Newton's 2nd law
	Galileo's relativity principle, space-time homogeneity and isotropy of space
	Linear superposition of forces
	Newton's 3rd law
	Dynamics, kinematics and statics: what do they refer to?
	Dimensional analysis and units
	Examples of forces

	Momentum, Energy, Work, Angular momentum, Dynamical variables
	Work done by a force and conservative forces
	Conserved energy for a conservative force
	Example of a nonconservative force: damping force
	Angular momentum
	Dynamical variables, phase & configuration spaces and conserved quantities

	Collisions or scattering and conservation laws
	Motion in one dimension
	Turning points, bound and unbound motion
	Time-reversal

	Oscillations
	Simple harmonic motion
	Simple pendulum
	Qualitative description and equation of motion
	Energy, angular momentum
	Oscillation through small angles: harmonic motion and clocks


	From Kepler's laws of planetary motion to Newton's law of gravitation
	Kepler's laws of planetary motion
	Ecliptic plane, polar coordinates and conservation of angular momentum
	Newton's inverse square law of gravitation

	Motion in uniformly accelerating frames
	Uniformly accelerating systems
	Principle of equivalence

	Special theory of relativity
	Difficulties with Newtonian mechanics
	Postulates of special relativity
	Incompatibility of Galilean transformations with constancy of the speed of light
	Synchronization of clocks & simultaneity


