Classical Mechanics 1, Autumn 2022 CMI Problem set 8 Due by 6pm, Friday Nov 4, 2022

Simple plane pendulum

- 1. $\langle \mathbf{10} \rangle$ Linearize the equation of motion $\ddot{\theta} = -\omega^2 \sin \theta$ for a pendulum around $\theta = \pi$ (top of circle), i.e., put $\theta = \pi + \phi$ and suppose ϕ is treated to linear order. Here $\omega = \sqrt{g/\ell}$.
 - (a) $\langle 2 \rangle$ Find the linear differential equation satisfied by ϕ .
 - (b) $\langle 4 \rangle$ Use a suitable guess to find two linearly independent solutions of the equation for ϕ and the general solution of the equation for given $\phi(0)$ and $\dot{\phi}(0)$.
 - (c) $\langle 4 \rangle$ Physically interpret the consequences of the solution of the linear differential equation for ϕ for typical (nonexceptional) initial conditions and comment on what it means for the stability of the static solution $\theta = \pi$. Comment on any exceptional ICs and the resulting time evolution.
- 2. $\langle \mathbf{9} \rangle$ Consider a simple pendulum with bob of mass m and rod of length l subject to Earth's acceleration due to gravity with magnitude g. Denote the counterclockwise deflection angle θ and use the coordinate frame developed in the lecture.
 - (a) $\langle \mathbf{3} \rangle$ Find a expression (in terms of θ) for the torque τ on the bob about the pivot. Which forces do/do not contribute to τ ?
 - (b) $\langle \mathbf{1} \rangle$ Write an expression (in terms of θ) for the angular momentum L of the bob about the pivot.
 - (c) $\langle 2 \rangle$ Use the evolution equation for L to derive a differential equation for $\theta(t)$. How does it compare with the EOM for θ derived from Newton's second law?
 - (d) $\langle \mathbf{3} \rangle$ Propose a limit holding m, l, g fixed in which the angular momentum is asymptotically conserved. Specify the limit through a suitable comparison of physical quantities. Comment on the nature of motion in this limit.