Classical Mechanics 1, Autumn 2022 CMI

Problem set 7
Due by 6pm, Wednesday Dec 1, 2022
Collisions, Time period of 1 d motion, stability of equilibria

1. $\langle\mathbf{1 3}\rangle$ Consider one-dimensional elastic scattering of 2 particles of masses m_{1}, m_{2} that retain their identities and masses after the collision. We view the collision in the lab frame. Suppose the velocities before and after collision are v_{1}, v_{2} and $v_{1}^{\prime}, v_{2}^{\prime}$. (a) $\langle\mathbf{1}\rangle$ Write the conservation equations for linear momentum and energy. You may use the symbols p for the conserved momentum, T for energy and $M=m_{1}+m_{2}$ for the total mass. (b) $\langle\mathbf{1}+\mathbf{2}\rangle$ Eliminate $v_{1}^{\prime}=\left(p-m_{2} v_{2}^{\prime}\right) / m_{1}$ and show that

$$
\begin{equation*}
v_{2}^{\prime}=M^{-1}\left[p \pm \sqrt{p^{2}-M\left(m_{1} / m_{2}\right)\left(p^{2} / m_{1}-2 T\right)}\right] \tag{1}
\end{equation*}
$$

(c) $\langle\mathbf{3}\rangle$ Argue from this that $v_{2}^{\prime}=v_{2}$ or

$$
\begin{equation*}
v_{2}^{\prime}=\left(2 m_{1} v_{1}+\left(m_{2}-m_{1}\right) v_{2}\right) / M \tag{2}
\end{equation*}
$$

(d) $\langle\mathbf{2}+\mathbf{2}\rangle$ In the case of nontrivial scattering show that

$$
\begin{equation*}
v_{1}^{\prime}=\left[2 m_{2} v_{2}+\left(m_{1}-m_{2}\right) v_{1}\right] / M \tag{3}
\end{equation*}
$$

Comment on the relation between the formulae for v_{1}^{\prime} and v_{2}^{\prime} and why the relation is to be expected. (e) $\langle\mathbf{2}\rangle$ Suppose the particles had equal and opposite initial velocities (i.e., as $t \rightarrow-\infty)$. Under what conditions would the more massive particle come to rest after the collision (i.e., as $t \rightarrow \infty$)? Under these conditions, what is the velocity of the lighter particle after the collision?
2. $\langle\mathbf{6}\rangle$ A point particle of mass $m>0$ moves along the real line subject to a force that arises from the potential $V(x)=\lambda\left(x^{2}-a^{2}\right)^{2}$ where $\lambda, a>0$ are fixed constants. (a) Plot the potential. (b) Find all static solutions of the equation of motion. (c) Classify them as stable and unstable to small perturbations.
3. $\langle\mathbf{5}\rangle$ Consider one-dimensional motion of a particle of mass m in a potential $V(x)$ with $x \in \mathbb{R}$. Suppose the particle's energy is E and $x_{1}<x_{2}$ are a pair of neighboring turning points for oscillatory motion [$V(x)<E$ for $x_{1}<x<x_{2}$]. Find an integral expression for the time period of the oscillatory motion between x_{1} and x_{2}.

