Classical Mechanics 1, Autumn 2022 CMI Problem set 4 Due by 6pm, Monday Sep 5, 2022 Spherical polars, gradient, degrees of freedom, Newton's first law

- 1. $\langle \mathbf{9} \rangle$ Consider the scalar field $\psi = 1/\sqrt{x^2 + y^2 + z^2}$ defined using Cartesian coordinates in \mathbb{R}^3 with the origin left out. (a) Find the gradient of ψ for x, y, z not all zero. After obtaining the answer in Cartesian coordinates, re-express ψ and the final answer for the gradient in spherical polar coordinates. (b) Say in words which way $\nabla \psi$ points and why and how its magnitude varies. Plot this vector field on a suitably chosen plane through the origin. Does the choice of plane matter? Why or why not?
- 2. $\langle 5 \rangle$ Consider an idealized straight rigid wire of zero thickness and fixed length ℓ (essentially a line segment) that is free to move in the seminar hall of CMI. How many degrees of freedom does this system possess? Explain by enumerating the degrees of freedom.
- 3. (4) Suppose a particle is known to be isolated (i.e., not subject to any force) but observer A finds that it executes accelerated motion with respect to A's frame of reference. On the basis of Newton's 1st law, explain whether A's frame is inertial or not.
- 4. (4) Suppose a particle is known to be subject to a net force but an observer finds that it does not move. (a) Based on Newton's 1st law, what can be deduced about whether the observer's frame is inertial or noninertial? (b) Based Newton's 2nd law, what can be said about whether the observer's frame is inertial or noninertial?