Classical Mechanics 1, Autumn 2022 CMI Problem set 3

Due by 6pm, Friday Aug 26, 2022 Polar coordinates

- 1. $\langle \mathbf{3} + \mathbf{6} \rangle$ Recall Cartesian (x, y) and plane polar coordinates (r, θ) discussed in the lecture. A particle moving on the plane has position vector $\mathbf{r}(t)$ relative to the fixed origin. (a) Find an expression for its velocity v(t) in plane polar coordinates (as a linear combination of $\hat{r}, \hat{\theta}$ with coefficients that depend on the polar coordinates and their time derivatives). Interpret the terms you get. (b) Similarly, find an expression for the acceleration $a = \ddot{r}$, again as a linear combination of $\hat{r}, \hat{\theta}$. Interpret the 4 terms that arise in \ddot{r} by giving them suitable names or indicating in words the nature of the terms.
- 2. $\langle 4 \rangle$ Suppose we make a linear change from Cartesian coordinates (x, y) to new coordinates (u, v) on the plane, given by u = ax + by and v = cx + dy for some real constants a, b, c, d. It is possible to show that vectors pointing in the direction of increasing u and v holding the other fixed are given by $\boldsymbol{u} = a\hat{x} + b\hat{y}$ and $\boldsymbol{v} = c\hat{x} + d\hat{y}$ where \hat{x} and \hat{y} are the usual unit vectors in the directions of increasing x and y respectively. Find conditions on (a, b, c, d)to guarantee that \boldsymbol{u} and \boldsymbol{v} are orthonormal. Interpret the answer in terms of the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}.$
- 3. $\langle 5 \rangle$ As we will discuss in the lectures, spherical polar coordinates in 3d are defined via $z = r \cos \theta$, $x = r \sin \theta \cos \phi$ and $y = r \sin \theta \sin \phi$. In spherical polar coordinates (r, θ, ϕ) . we define three vectors $\hat{r}, \hat{\theta}, \hat{\phi}$ via linear combinations of the Cartesian unit vectors:

$$\hat{r} = \cos \theta \hat{z} + \sin \theta (\cos \phi \hat{x} + \sin \phi \hat{y}),
\hat{\theta} = -\sin \theta \hat{z} + \cos \theta (\cos \phi \hat{x} + \sin \phi \hat{y}) \text{ and }
\hat{\phi} = -\sin \phi \hat{x} + \cos \phi \hat{y}.$$
(1)

Verify that $(\hat{r}, \hat{\theta}, \hat{\phi})$ is a right-handed orthonormal system.

4. (4) Spherical polar coordinates. Bearing in mind Equation (1), express \hat{r} along a particle's trajectory $(r(t), \theta(t), \phi(t))$ as a linear combination of $\hat{r}, \hat{\theta}$ and $\hat{\phi}$. Qualitatively explain the coefficient of \hat{r} .