Classical Mechanics 1, Autumn 2022 CMI Problem set 2 Due by 6pm, Wednesday Aug 17, 2022 Scalar and vector products, Circular motion

- 1. $\langle 4 \rangle$ Express the Cartesian components of the cross product $a \times b$ in terms of those of a and b.
- 2. $\langle 4 \rangle$ Show that $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$ by working with the Cartesian components of the three vectors.
- 3. $\langle \mathbf{3} \rangle$ Define the Levi-Civita symbol ϵ_{ijk} for integers $1 \leq i, j, k \leq 3$ (not necessarily distinct) by the conditions (i) $\epsilon_{123} = 1$ and (ii) ϵ_{ijk} reverses sign under exchange of any pair of indices [e.g. $\epsilon_{ijk} = -\epsilon_{jik}$]. Find ϵ_{213} , ϵ_{312} , ϵ_{321} , ϵ_{112} , ϵ_{313} and ϵ_{222} .
- 4. $\langle \mathbf{4} \rangle$ Verify that $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \sum_{1 \leq i, j, k \leq 3} \epsilon_{ijk} a_i b_j c_k$ where a_i, b_j, c_k are the Cartesian components of three vectors in \mathbb{R}^3 . Here $a_1 = a_x, a_2 = a_y, a_3 = a_z$ etc.
- 5. $\langle \mathbf{4} \rangle$ Suppose $\mathbf{a}(t)$ is the acceleration vector of a particle undergoing uniform circular motion at angular speed ω counterclockwise around a circle of radius ℓ with position vector \mathbf{r} relative to the center of the circle. The circle is centered at the origin of the x-y plane. Suppose the particle is at $x = \ell, y = 0$ at t = 0. Find $\mathbf{v} = \dot{\mathbf{r}}, \mathbf{a}$ and $\dot{\mathbf{a}}$ (as linear combinations of \hat{x} and \hat{y}). Show that $\dot{\mathbf{a}} \cdot \mathbf{a} = 0$. What is the significance of this result?