Classical Mechanics 1, Autumn 2022 CMI Problem set 1 Due by 6pm, Monday Aug 8, 2022 Vectors, dot and cross products

- 1. $\langle 4 \rangle$ How does the torque τ due to a force F on a particle change if the origin O for position vectors is shifted to O' = O + a? Relate the torques with respect to the two origins. Draw a figure to illustrate.
- 2. $\langle 6 \rangle$ A particle of mass *m* moves along a circle on a horizontal plane. Its angular momentum vector is defined as $\mathbf{L} = m\mathbf{r} \times \mathbf{v}$ where \mathbf{r} is its position vector and \mathbf{v} its instantaneous velocity. Comment on the direction of \mathbf{L} (upwards, downwards) and illustrate with figures in each of these cases (a) the origin is at the center of the circle and (b) the origin is at a point on the horizontal plane lying outside the disk defined by the circle.
- 3. $\langle 3 \rangle$ Suppose Ω and r are a pair of vectors. Find an expression for $|\Omega \times r|^2$ purely in terms of dot products of the vectors Ω and r.
- 4. $\langle 3 \rangle$ Suppose a particle is subject to a force of the form $F = v \times h$ where v is its velocity and h some vector. Comment on the work done by this force in displacing the particle infinitesimally.
- 5. $\langle \mathbf{5} \rangle$ Consider a particle that moves on a sphere, its position vector \mathbf{r} is defined relative to the center of the sphere. The sphere rotates (counterclockwise when viewed from above) about a vertical axis through its center at the angular speed Ω . The angular velocity vector $\mathbf{\Omega}$ has magnitude Ω and points upwards. Comment on the direction of the vector $-\mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$. Draw a figure to clarify.