Classical Mechanics (PG), Autumn 2013 CMI Problem set 7 Due at the beginning of lecture on Wednesday Sept 4, 2013 Action principle, Legendre transform

- 1. $\langle \mathbf{6} \rangle$ Give an example from the Kepler problem to illustrate the fact that there may be more than one trajectory joining given initial and final locations at specified times. Illustrate with a figure showing $\mathbf{r}(t_i), \mathbf{r}(t_f)$ and more than one trajectory connecting them. You must give formulae for $t_i, t_f, \mathbf{r}(t_i)$ and $\mathbf{r}(t_f)$.
- 2. $\langle 4 \rangle$ The first law of thermodynamics says that the change in internal energy of a gas is equal to the heat supplied to the gas minus the work done by the gas. For infinitesimal reversible changes, dU = TdS PdV. Here dU is the increase in internal energy, P the pressure, dV the increase in volume dS the increase in entropy and T the absolute temperature.
 - (a) (1) What are the independent variables that U depends on?
 ANS: U(S, V). You need two independent variables on the thermodynamic state space, say S, V. The equation of state relates P, V, T so you need only two of them to specify the thermodynamic state, say P, T. Instead of P we can use the conjugate variable V. Instead of T we may use the conjugate variable S.
 - (b) $\langle \mathbf{1} \rangle$ Helmholtz free energy may be introduced via the formula F = U TS. Find the independent variables that F depends on.
 - (c) $\langle 1 \rangle$ Express the pressure and entropy in terms of the Helmholtz free energy.
 - (d) (1) Write a formula for Helmholtz free energy as a Legendre transform of the internal energy. Indicate which variable to extremize in and give the condition for an extremum.
- 3. $\langle 7 \rangle$ Find a smooth convex function L(v) of a real variable v whose Legendre transform $H(p) = \exp_v(pv L(v))$ is the same function as L. In other words, H(x) = L(x) for any $x \in \mathbb{R}$. You may first try to guess such a function using physical knowledge. But you must also formulate the above condition as an equation and try to solve it to determine such a function.