Classical Mechanics (PG), Autumn 2013 CMI

Problem set 6
Due at the beginning of lecture on Wednesday August 28, 2013
Phase portrait

1. $\langle\mathbf{1 6}\rangle$ Consider a particle in the potential $V(x)=g\left(x^{2}-a^{2}\right)^{2}$ in one dimension. Here $g, a>0$.
(a) $\langle\mathbf{2}\rangle$ Write a formula for the conserved energy. Find all equilibrium points (mention stable and unstable) and their energies.
(b) $\langle\mathbf{2}\rangle$ Roughly sketch the potential as a function of x, indicating the point a and the value of energy at the unstable equilibrium point.
(c) $\langle\mathbf{1}\rangle$ Give a suitable name for this potential.
(d) $\langle\mathbf{1 1}\rangle$ Draw a phase portrait for this system, i.e., indicate the phase space trajectories for various different values of energy/initial conditions. Do this without solving the equations of motion, but using conservation of energy, previous results and physical reasoning. You must draw at least 8 qualitatively distinct trajectories (with arrow showing direction of motion) and briefly mention the nature of the motion along each of them.
