Classical Mechanics (PG), Autumn 2013 CMI Problem set 3 Due at the beginning of lecture on Monday August 19, 2013 Collision, oscillations

- 1. $\langle \mathbf{5} \rangle$ Consider a particle of mass m in a $V(r) = -\frac{\alpha}{r^n}$ potential for n > 0. It starts at t = 0 at a radial distance r_0 with a radially inward directed velocity (≥ 0). Will a collision occur in finite time t_c ? Why? If so, find the asymptotic behavior of the radial distance r(t) near the collision time $t \approx t_c$.
- 2. $\langle 25 \rangle$ Consider the matrix $M = \begin{pmatrix} -5 & 4 \\ -9 & 7 \end{pmatrix}$ representing a linear transformation acting on \mathbb{R}^2 in the standard basis.
 - (a) $\langle \mathbf{1} \rangle$ Find det M, tr M.
 - (b) $\langle \mathbf{1} \rangle$ Deduce its eigenvalues and also find the characteristic polynomial of M.
 - (c) $\langle 2 \rangle$ Find linearly independent eigenvectors u corresponding to each eigenvalue. To avoid fractions, normalize all eigenvectors so that their upper component is 2.
 - (d) $\langle 2 \rangle$ Can *M* be diagonalized by a change of basis? Why?
 - (e) $\langle \mathbf{2} \rangle$ There is a basis for \mathbb{R}^2 consisting of eigenvectors and generalized eigenvectors of M in which M takes a simple form. A generalized eigenvector $v \neq 0$ is one which is annihilated by $(M \lambda I)^2$ in this case. Find all such v and pick one really simple \tilde{v} that is linearly independent of the genuine eigenvectors u.
 - (f) $\langle 2 \rangle$ Check that $(M \lambda I)\tilde{v} = cu$ is proportional to an eigenvector u with eigenvalue λ . Why did this have to be the case?
 - (g) $\langle \mathbf{5} \rangle$ Now find the matrix \tilde{J} representing M in the new basis consisting of u, \tilde{v} . Mention any plausible features of \tilde{J} that are manifest. Hint: The matrix $\tilde{J} = S^{-1}MS$ where the columns of S are u, \tilde{v} in that order. S is the similarity transformation from the old to the new basis.
 - (h) $\langle 4 \rangle$ To get the Jordan normal form J of M we want the north-east corner entry in J to be equal to 1 (first super diagonal). This is achieved by picking a generalized eigenvector v so that the above proportionality constant is c = 1. Can you see why this is the case? Find a generalized eigenvector v so that $(M \lambda I)v = u$. Show that such a v is not unique. So for definiteness, choose the upper component of v to be 1.
 - (i) $\langle \mathbf{3} \rangle$ Find the Jordan normal form of M, $J = S^{-1}MS$ using the above choice of v.
 - (j) $\langle 3 \rangle$ Among other things, the Jordan normal form helps us understand what M does when it acts repeatedly, which will be useful in analyzing systems subject to forces that oscillate periodically in time. Find M^{100} using the similarity transformation to Jordan normal form. Notice that this is substantially easier than direct calculation of M^{100} .