Classical Mechanics (PG), Autumn 2013 CMI

Problem set 2
Due at the beginning of lecture on Monday August 12, 2013
Central force problem, 1D potentials

1. $\langle\boldsymbol{8}\rangle$ Look for a scaling symmetry of the equations of motion of a particle moving in 3D in a $V(r)=-\frac{\alpha}{r^{n}}$ potential for $n>0$. What we mean is that if $\mathbf{r}(t)$ is a solution, then so must $\mathbf{s}(t)=\lambda^{\gamma} \mathbf{r}(\lambda t)$ for some γ and for any $\lambda>0$. Can you find a γ that does the job? Hint: Unit vectors remain unit vectors under rescaling.
2. $\langle\mathbf{5}\rangle$ For $W>V>0$, evaluate the integral

$$
\begin{equation*}
\Pi=\int_{V}^{W} \frac{d E}{\sqrt{(E-V)(W-E)}} \tag{1}
\end{equation*}
$$

Hint: Try the substitution $x=\sqrt{\frac{E-V}{W-E}}$.

