Classical Mechanics (PG), Autumn 2013 CMI

Problem set 17
Due at the beginning of lecture on Monday Nov 18, 2013
Double pendulum, oscillations

1. $\langle\mathbf{9}\rangle$ Consider the double pendulum in the small oscillation approximation.
(a) $\langle\mathbf{2}\rangle$ Identify the Riemannian metric $g_{i j}$ on the torus $S^{1} \times S^{1}$ defined by the kinetic energy $T=\frac{1}{2} g_{i j} \dot{\theta}^{i} \dot{\theta}^{j}$ in the small oscillation approximation.
(b) $\langle\mathbf{3}\rangle$ Is it a flat/curved metric? Find out by calculating the Riemann tensor.
(c) $\langle\mathbf{4}\rangle$ Is the picture of this torus as the surface of a Vadai/tyre-tube embedded in 3d Euclidean space \mathbb{R}^{3}, a geometrically faithful (i.e. isometric) depiction?
2. $\langle\boldsymbol{7}\rangle$ Consider the double pendulum in the small oscillations approximation $\left|\theta_{i}\right| \ll 1$, with hamiltonian

$$
\begin{equation*}
H\left(\theta_{i}, p_{i}\right)=\frac{1}{2 m l^{2}}\left[p_{1}^{2}+2 p_{2}^{2}-2 p_{1} p_{2}\right]+m g l\left[\theta_{1}^{2}+\frac{\theta_{2}^{2}}{2}-3\right] . \tag{1}
\end{equation*}
$$

Show that a constant energy $H=E$ hypersurface is contained in a finite region of phase space. Why is this intuitively/physically expected?
3. $\langle\mathbf{5}\rangle$ Recall the time-independent Schrödinger eigenvalue problem for a particle moving along a line in a potential $V(x)$

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)+V(x) \psi(x)=E \psi(x) \tag{2}
\end{equation*}
$$

Formulate this equation as a pair of first order ODEs and write it in matrix form $x^{\prime}=A x$. Identify the matrix of coefficients A and show that it is traceless but not symmetric in general.

