Classical Mechanics (PG), Autumn 2013 CMI Problem set 17 Due at the beginning of lecture on Monday Nov 18, 2013 Double pendulum, oscillations

- 1. $\langle 9 \rangle$ Consider the double pendulum in the *small oscillation* approximation.
 - (a) $\langle \mathbf{2} \rangle$ Identify the Riemannian metric g_{ij} on the torus $S^1 \times S^1$ defined by the kinetic energy $T = \frac{1}{2}g_{ij}\dot{\theta}^i\dot{\theta}^j$ in the small oscillation approximation.
 - (b) $\langle 3 \rangle$ Is it a flat/curved metric? Find out by calculating the Riemann tensor.
 - (c) $\langle 4 \rangle$ Is the picture of this torus as the surface of a Vadai/tyre-tube embedded in 3d Euclidean space \mathbb{R}^3 , a geometrically faithful (i.e. isometric) depiction?
- 2. $\langle \mathbf{7} \rangle$ Consider the double pendulum in the small oscillations approximation $|\theta_i| \ll 1$, with hamiltonian

$$H(\theta_i, p_i) = \frac{1}{2ml^2} \left[p_1^2 + 2p_2^2 - 2p_1 p_2 \right] + mgl \left[\theta_1^2 + \frac{\theta_2^2}{2} - 3 \right].$$
(1)

Show that a constant energy H = E hypersurface is contained in a finite region of phase space. Why is this intuitively/physically expected?

3. $\langle \mathbf{5} \rangle$ Recall the time-independent Schrödinger eigenvalue problem for a particle moving along a line in a potential V(x)

$$-\frac{\hbar^2}{2m}\psi''(x) + V(x)\psi(x) = E\psi(x)$$
⁽²⁾

Formulate this equation as a pair of first order ODEs and write it in matrix form x' = Ax. Identify the matrix of coefficients A and show that it is traceless but not symmetric in general.