# Classical Mechanics (PG), Autumn 2013 CMI 

Problem set 14
Due at the beginning of lecture on Monday Oct 28, 2013
Generating function for canonical transformations, action-angle variables for SHO

1. $\langle\mathbf{1 2}\rangle$ Consider the simple harmonic oscillator $H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}$ with spring constant $k=m \omega^{2}$. We follow the notation and conventions adopted in the lecture.
(a) $\langle 4\rangle$ Use an abbreviated action integral to solve the time-independent HJ equation and find a generating function $W(q, I)$ for the canonical transformation to action-angle variables $I=E / \omega$ and $\theta=\arctan (m \omega q / p)$.
(b) $\langle\mathbf{4}\rangle$ Verify that this function $W$ generates a canonical transformation to the above action-angle variables. In other words, show explicitly that

$$
\begin{equation*}
\frac{\partial W}{\partial q} \stackrel{?}{=} p=\sqrt{2 m(E-V)} \quad \text { and } \quad \frac{\partial W}{\partial I} \stackrel{?}{=} \theta=\arcsin \left(q \sqrt{\frac{m \omega}{2 I}}\right) \tag{1}
\end{equation*}
$$

(Why is this different-looking formula for $\theta$, also valid?)
(c) $\langle\mathbf{4}\rangle$ Use the above $W(q, I)$ to find a generating function of the first kind $F_{1}(q, \theta)$ for the same canonical transformation. Give the explicit formula for $I$ as a function of $\theta, q$ as well as a simple formula for $F_{1}(q, \theta)$.

