Classical Mechanics (PG), Autumn 2013 CMI Problem set 13 Due at the beginning of lecture on Tuesday Oct 15, 2013 Canonical transformations, Liouville's theorem

- 1. $\langle 4 \rangle$ Suppose $J = I + \epsilon F$ where J is a $2n \times 2n$ matrix as in the discussion of Liouville's theorem and ϵ is a small parameter. Recall the identity $e^{\operatorname{tr } \log J} = \det J$ where $\log[I + \epsilon F]$ is defined by the logarithmic series. Find the *quadratic* Taylor polynomial for det J regarded as a series in ϵ .
- 2. $\langle \mathbf{6} \rangle$ For one degree of freedom, find all infinitesimal *linear* canonical transformations $(q, p) \mapsto (Q, P)$ that fix the origin $(0, 0) \mapsto (0, 0)$. What is the dimension of the space of such infinitesimal linear CTs? Find the generating function f(q, p) for the most general such infinitesimal linear canonical transformation.
- 3. $\langle \mathbf{5} \rangle$ For one degree of freedom, find all (finite) *linear* canonical transformations $(q, p) \mapsto (Q, P)$ that fix the origin. Identify the matrix group of such CTs. What is the dimension of this group as a manifold?
- 4. $\langle \mathbf{10} \rangle$ Consider the finite canonical transformation, corresponding to a rotation of the phase plane

Q = cq - sp and P = sq + cp where $s = \sin \theta$ and $c = \cos \theta$. (1)

- (a) $\langle \mathbf{2} \rangle$ We seek a generating function of type-II W(q, P) for the above finite CT. Find the PDEs that W(q, P) must satisfy to ensure it generates the above CT. What sort of PDEs are they?
- (b) $\langle \mathbf{5} \rangle$ Integrate the PDEs and give a simple formula for the generating function W(q, P).
- (c) $\langle \mathbf{1} \rangle$ Verify that your proposed function W(q, P) indeed generates the above finite rotation.
- (d) $\langle 2 \rangle$ Find a generating function of type $F_1(q, Q)$ that generates the same finite rotation via an appropriate Legendre transform from W(q, P).