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1 Two body central force problem

1.1 Inverse problem: Universal law of gravity from Kepler’s laws

• Based on astronomical observations (especially of Tycho Brahe) Kepler formulated (1606-
1619) three laws of planetary motion around the sun: (1) Planetary orbits are ellipses with the
Sun at a focus (in particular each orbit lies on a plane, the ecliptic plane of the planet); (2)
The radius vector connecting the sun to a planet sweeps out equal areas in equal times and
(3) The square of the period of revolution is proportional to the cube of the semi-major axis,
with a proportionality constant that is approximately the same for all planets r3 = KT 2 where
K ≈ 7.5× 10−6 (AU)3 /(day)2 = 3.4× 1018 m3 /s2 is ‘Kepler’s constant’. An astronomical unit
AU is roughly the mean sun-earth distance, approximately 150 million km. Let us see how these
laws led to the universal law of gravitation and how they could be understood using Newtonian
mechanics.

• We use spherical polar coordinates (r, θ, φ) for the planet’s location r with sun at the origin.
The plane of the planet’s motion is taken as the x − y plane, so that θ = π/2. If the angular
momentum l = r×p were conserved (at least in direction), then the orbit would have to lie on a
plane perpendicular to l . Moreover, the angular momentum l = lz ẑ = (xpy − ypx)ẑ = mr2φ̇ ẑ .
Now Kepler’s second law is used to deduce that the magnitude of angular momentum is constant
in time. Indeed, the infinitesimal area swept out by the line joining the sun to the planet in a
small time dt while the planet’s angular position changes dφ is dAr = 1

2r× rdφ
1. So constancy

1We ignore here the small change in area that results from a change in r , for this area is 2nd order in

2



of Ȧr = 1
2r

2φ̇ implies angular momentum is conserved. It is an independent mathematical fact of
Newtonian dynamics that angular momentum is conserved in a central potential. This suggests
that the gravitational force is central F = −f(r)r̂ (− for attraction). The inverse-square nature
of the force is guessed from Kepler’s third law T 2 ∝ r3 . The eccentricity of several planetary
orbits is fairly small ( .02 for the Earth) and they approximately describe uniform circular motion
around the sun. Kepler’s law certainly applies to these planets and let us see what it implies.
Equating the centripetal acceleration to the gravitational force gives

me
v2

r
= f(r) with v =

2πr

T
⇒ f(r) =

4π2Kme

r2
(1)

Besides its inverse square nature, the above gravitational force on the Earth due to the sun is
proportional to the Earth’s mass me so that the Earth’s acceleration is independent of its mass.
Newton postulated that this must be true also of the force felt by the sun due to the Earth
(his 3rd law) and concluded that K ∝ ms . Thus we guess the universal (both terrestrial and
celestial) law of gravitation

F = −Gmsme

r2
r̂ where G =

4π2K

ms
= 6.67× 10−11 Nm2/kg2. (2)

We will often abbreviate α = Gmems , me = 6 × 1024 kg and ms = 2 × 1030 kg. Kepler’s
first law on elliptical orbits may now be derived as a consequence of Newton’s second law and
the universal law of gravitation. An important feature of the gravitational force is that it is
derivable from the gravitational potential V (r) = −α/r

F = − α
r2
r̂ = −∇r

(
−α
r

)
= −∇rV (r). (3)

In obtaining the 1/r potential from Kepler’s laws we have in effect solved an inverse problem, i.e.,
to deduce a potential from features of trajectories. More specifically, we deduced a potential from
the period of oscillations that it supports. To solve such a problem in general is very difficult,
and we (Newton and co.) are lucky to have succeeded in this case of central importance. Now
let us address the direct problem of finding the orbits given the potential.

1.2 Conservation laws

• Now we wish to find the shapes of planetary orbits by solving Newton’s second law of motion
for a pair of gravitating masses m1 = me , m2 = ms . To do this, it helps to obtain and use the
conservation of energy. However, we need to take care of the fact that both the sun and earth
can move. If we put α = Gmems and V (r) = −α/r , Newton’s second law for the earth (r1 )
and sun (r2 ) says

m1r̈1 =
α

r2
r̂ = ∇rV (r) and m2r̈2 = − α

r2
r̂ = −∇rV (r) (4)

where r = r2 − r1 is the radius vector from the sun to the Earth. It is also convenient to define
the total mass M = m1 +m2 and center of mass coordinate R .

R =
m1r1 +m2r2

M
and r = r2 − r1 ⇒ r1 = R− m2

M
r and r2 = R +

m1

M
r. (5)

infinitesimals, ∝ dφ dr .
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It then follows that

∇1 = −∇r +
m1

M
∇R and ∇2 = ∇r +

m2

M
∇R (6)

In particular, when acting on functions of r alone, such as V (r),

∇1V (r) = −∇rV (r) and ∇2V (r) = +∇rV (r) (7)

We often abbreviate ∇r = ∇ . Thus, Newton’s second law for the sun and Earth may be written

ṗ1 = m1r̈1 = ∇rV (r) = −∇1V (r) and ṗ2 = m2r̈2 = −∇rV (r) = −∇2V (r) where V (r) = −α
r
.

(8)

To obtain the conserved energy, we dot the first equation by the integrating factor ṙ1 and the
second by ṙ2 to get

m1r̈1 · ṙ1 = ṙ1 · ∇rV (r) and m2r̈2 · ṙ2 = −ṙ2 · ∇rV (r) (9)

Adding these two equations

d

dt

(
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2

)
= −ṙ · ∇rV (r) = −dV (r)

dt
. (10)

Total energy is thus conserved

Etot =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 −

α

r
. (11)

It is revealing to write this in terms of the centre of mass and relative coordinates. One finds

Etot = Ecm + E where Ecm =
1

2
MṘ2 and E =

1

2
mṙ2 + V (r). (12)

Simply by adding Newton’s second law for the sun and earth one finds that R̈ = 0 so that Ecm is
conserved. It follows that the energy of relative motion E is separately conserved. Subtracting
the first from the second gives us the eom for r :

r̈1 =
1

m1
∇V and r̈2 = − 1

m2
∇V ⇒ r̈ = r̈2−r̈1 = −

(
1

m1
+

1

m2

)
∇V ⇒ mr̈ ≡ ṗ = −∇V.

(13)
Here we defined the reduced mass m = m1m2/M and the relative momentum p = mṙ . Using
this, one checks that the relative angular momentum l = r × p is conserved since the force is
central

l̇ = ṙ× p + r× ṗ =
1

m
p× p− r×∇rV (r) = 0. (14)

The total angular momentum ltot = r1 × p1 + r2 × p2 is of course also conserved

l̇tot = r1 × ṗ1 + r2 × ṗ2 = −(r2 − r1)×∇V (r) = −r×∇V (r) = 0. (15)

• Since ṗ = −∇V , the relative momentum is not conserved (there is no translation invariance
with respect to the relative coordinate). But the total momentum P = p1 + p2 is conserved,
indeed

Ṗ = ṗ1 + ṗ2 = ∇V −∇V = 0. (16)

• There is one more conserved quantity, the Laplace-Runge-Lenz vector which we will consider
shortly.
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1.3 Planetary orbits

• Since l is conserved, we choose ẑ along l , so that the orbits will be counter clockwise. The
equation of an ellipse in plane polar coordinates is ρ

r = 1 + ε cosφ where 0 < ε < 1 is the
eccentricity2. When ε = 0 this is a circle of radius ρ . In cartesian coordinates x = r cosφ, r =√
x2 + y2 the equation takes the form

(1− ε2)x2 + 2ρεx+ y2 − ρ2 = 0 or
(1− ε2)2

ρ2

(
x+

ρε

1− ε2

)2

+
(1− ε2)

ρ2
y2 = 1. (17)

This is now in the standard form x2

a2 + y2

b2
= 1. Half the latus rectum ρ = a(1− ε2) is related to

the length a of the semi-major axis, b = ρ√
1−ε2 is the semi-minor axis and ε =

√
1− b2

a2 . When

ε > 1 the coefficients of x2 and y2 have opposite signs and we get a hyperbola. For ε = 1 we
get the parabola y2 = ρ2 − 2ρx opening out to the left.

• Conservation of relative energy and relative angular momentum allow us to establish the ellip-
tical shape of planetary orbits. The ‘relative energy’ is expressed in terms of angular momentum

E =
1

2
mṙ2 +

l2

2mr2
− α

r
where α = Gm1m2. (18)

We get this from the square of relative angular momentum l = r×p , (we use r̂ ·p = mṙ below)3

l2 = l2 = (r× p)2 = r2p2 − (r · p)2 ⇒ p2

2m
=

(r̂ · p)2

2m
+

l2

2mr2
(19)

In polar coordinates, l2 = (mr2)2
(
θ̇2 + sin2 θ φ̇2

)
and for motion on the θ = π/2 plane, l =

mr2φ̇ .

• Veff(r) = l2

2mr2 − α
r is an effective potential that includes the repulsive ‘centrifugal’ angular

momentum barrier. For fixed angular momentum l 6= 0, the minimum energy orbit is a circle
of radius r = ρ = l2

mα which is the minimum of the effective potential V ′eff(r) = 0. The planet

executes uniform circular motion ṙ = 0 and φ̇ = l
mρ2 with energy E = − α

2ρ . If 0 > E > − α
2ρ ,

we expect the radial distance to oscillate about ρ with turning points at perihelion and aphelion.
For E ≥ 0 the orbit is unbound, though it has a turning point at perihelion, resulting in parabolic
and hyperbolic orbits. Finally, if l = 0 there is no angular momentum barrier, we discuss this
in a subsequent section. Now we obtain the shape of orbits.

• Energy conservation E = 1
2mṙ

2 + Veff(r) gives a 1st order equation. We could integrate it to
find t(r)

±(t− t0) =

√
m

2

∫ r

r0

dr′√
E − Veff(r′)

(20)

2Perihelion r = rmin = ρ
1+ε

when φ = 0 and aphelion r = rmax = ρ
1−ε when φ = π . We have oriented and

positioned the axes to ensure the semi-major axis is along x̂ and there is a y → −y symmetry. The origin is at
the right focus. A rotated ellipse results if we take ρ

r
= 1 + ε cos(φ− φ0) .

3One way to get this is to use the fact that the motion is on the θ = π/2 plane and write r = (rc, rs) ,
ṙ = (ṙc − rsφ̇, ṙs + rcφ̇) where c = cosφ, s = sinφ , and thereby obtain ṙ · r = rṙ . The same works in spherical
polar coordinates even for θ 6= π/2.
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and invert to find r(t). Then we may use angular momentum conservation l = mr2φ̇ to find
φ(t)

φ− φ0 =

∫ t

t0

l dt

mr2(t)
= ± l√

2m

∫ r

r0

dr

r2
√
E − Veff(r)

(21)

So the solution of the eom has been reduced to quadrature (integration).

• But if we are primarily interested in the shape of the orbit (rather than the time dependence),
it is simpler to think of r as a function of φ . Then

ṙ = r′(φ)φ̇ = r′(φ)
l

mr2
. (22)

Appearance of r′

r2 suggests the substitution u = 1/r in terms of which ṙ = − l
mu
′(φ). The

energy becomes

E =
l2

2m

(
u2 + u′(φ)2

)
− αu (23)

Differentiating this gives us a simple 2nd order differential equation for the orbit

u′′ + u =
mα

l2
≡ 1

ρ
where ρ is the radius of the circular orbit for that l . (24)

This is the equation for a harmonic oscillator with constant driving force. A particular solution
is up = 1

ρ and the general homogeneous solution is uh = N cos(φ − φo). The first integration
constant, the phase φo simply rotates the orbit and will be omitted. The second integration
constant N has dimensions of inverse length and will be related to the energy (or eccentricity).
Thus the equation for the orbit reduces to that of an ellipse

1

r
= N cosφ+

1

ρ
or

ρ

r
= 1 + ε cosφ (25)

Here we defined the dimensionless constant ε = Nρ ≥ 0 which is the eccentricity. By substituting
in the expression for energy we relate eccentricity to energy and ρ

E = − α

2ρ

(
1− ε2

)
= − α

2a
where ρ =

l2

mα
. (26)

It is clear that for E = −α/2ρ eccentricity vanishes ε = 0 and we get a circular orbit. For
−α/2ρ < E < 0 we have 0 < ε < 1 and we get elliptical planetary orbits. For E = 0, the
eccentricity ε = 1 and we have an unbound parabolic orbit y2 = ρ2 − 2ρx . For ε > 1, E > 0
and we have unbound hyperbolic orbits.

1.4 Period of elliptical orbits

• For E < 0, since orbits are closed curves (ellipses) motion is periodic. Why? After some time
T , r returns to initial position r0 and energy is unchanged and so is potential energy (since it
depends only on |r|), so KE and speed must be unchanged. Direction of velocity is tangent to
the same ellipse and is also unchanged. So both position and velocity return to their original
values.

• There is a simple way to find the period of elliptical orbits. By the conservation of angular
momentum, the areal speed is a constant dAr

dt = l
2m (Kepler’s second law). Integrating over one
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period, area of ellipse Ar = lT
2m . But Ar = πab = πρ2

(1−e2)3/2 since a = ρ
(1−e2)

and b = ρ√
1−e2 .

Using this and ρ = m2/lα to eliminate l and m = m1m2/M we get

T 2 =
4m2

l2
(Ar)2 =

4π2m

α
a3 =

4π2

GM
a3 =

a3

K̃
. (27)

We have expressed the period in terms of the semi-major axis and K̃ = GM/4π2 . We also
recover Kepler’s 3rd law (not just for circular orbits). Since M = m1 +m2 , K̃ depends on the
sum of solar and planetary masses. But since all planets are at least a 1000 times lighter than the
Sun, M ≈ ms . Hence, K̃ ≈ Gms/4π

2 = K reduces to Kepler’s constant and is approximately
the same for all planets.

1.5 LRL or eccentricity vector and relations among conserved quantities

• The V (r) = −α/r potential has the special feature that all bound trajectories are closed,
leading to periodic motion. This is not generally true, of central potentials. For instance the
central potential V (r) = −α

r −
α′

r2 for small4 α′ does have a closed trajectory, the circular one
at the minimum of the effective potential. But not every bound trajectory is closed. For energy
more than minimal, a typical trajectory fails to close and looks like a rosette or ‘precessing
ellipse’. It is clear from the effective potential that for fixed E and l , r(t) is a periodic function
of time, oscillating between turning points determined by E = Veff(rmin) = Veff(rmax). In
particular, the perihelion and aphelion distances do not change with time. But the problem is
that the period of r is not in general rationally related to the time it takes for the angle φ to
go from zero to 2π . The change in φ as r goes from rmin (when φ = φo ) to rmax and returns
to rmin is

φ− φo =
2l√
2m

∫ rmax

rmin

dr

r2
√
E − Veff(r)

. (28)

But this need not be a rational multiple of 2π . As a consequence the orbit is not closed. For
such a rosette-shaped orbit, the vector from the origin to perihelion is not fixed, but rotates. Of
course, this vector is only defined at discrete times when the planet is at perihelion, its length
does not change since the distance to perihelion is fixed by the turning point rmin in Veff . Among
central potentials, only the −α/r and isotropic harmonic oscillator potentials 1

2mω
2r2 are such

that every bound orbit is closed.

• For the closed elliptical trajectories of the −α/r potential, the vector from the origin (focus)
to the perihelion is a conserved vector. This explains the existence of the Laplace-Runge-Lenz
conserved vector. One could try to guess what this vector is by trying out a linear combination
of vectors r,p and p × l that lie in the plane of the orbit. The combination that works is the
LRL vector A (some authors divide the rhs by m)

A = p× l−mαr̂. (29)

A · l = 0 so A lies in the orbital plane. The ‘eccentricity vector’ is defined as (we will see that
|ε| = ε),

ε =
A

mα
=

v × l

α
− r̂. (30)

4We assume the conserved angular momentum is large enough for l2 > 2mα′ . So there is an angular momentum

barrier in the effective potential Veff = l2

2mr2
− α

r
− α′

r2
.
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Let us first check that the LRL vector is conserved. Using l̇ = 0 and ṗ = −αr
r3

Ȧ = ṗ×l−mα ṙ

r
+
mα ṙ r

r2
= ṗ×(r×p)−αp

r
+
α(r · p)r

r3
= r(ṗ·p)−p(ṗ·r)−αp

r
+
α(r · p)r

r3
= 0.

(31)

• Being a conserved vector we may find its direction at any time, say at perihelion. ρ
r =

1 + ε cosφ . Since l is in the ẑ direction, the motion is counterclockwise and perihelion occurs
at φ = 0, rmin = ρ

1+ε . At perihelion, r = rx̂ and by the y → −y symmetry of the orbit, the

tangent to the curve is in the ŷ direction, p = pŷ . It follows that at perihelion5

A = (lp−mα)x̂ = mαε x̂. (32)

Hence A points towards perihelion and has a magnitude mαε . Thus, the eccentricity vector
ε = A

mα has a length equal to the eccentricity. Both A and ε vanish for the circular orbits.

• Thus for motion in the potential V (r) = −α/r we have found 7 conserved quantities E, l and
A . But this system has only three degrees of freedom and requires 6 initial conditions (r(0), ṙ(0))
to determine time evolution. So the 7 conserved quantities cannot all be independently freely
specified. We can have at most 2n − 1 independent conserved quantities for a system with n
degrees of freedom. If there is such a maximal set of conserved quantities, and their values are
specified, then they determine a curve in phase space, the trajectory parametrized by time. If
there was another independent conserved quantity, it would force the trajectory to be a point.

• This implies there must be at least 2 relations among E, l and A . One is obvious A · l = 0.
So we seek another scalar relation among the conserved quantities. The only scalars available
to us are A2 and l2 so the relation must be of the form f(E,A2, l2,m, α) = 0. To get an idea
of what this relation may be, we recall the expressions for A, l, E for the orbits determined so
far (i.e. for l 6= 0):

E = − α

2ρ
(1− ε2), A2 = m2α2ε2, and l2 = mαρ. (33)

Substituting for ρ and ε2 in terms of l2 and A2 in E we arrive at the relation A2 = 2mEl2 +
m2α2 . If a relation among conserved quantities holds for every solution of the equations of
motion, then it must be generally true.

• To be sure, we may also obtain this scalar relation from the definition of A, l, E (without
using the solution of the Kepler problem) simply by computing the square of A = p× l−mαr̂
and using p2 = 2m(E + α/r) and p · l = 0,

A2 = (p× l)2 − 2mαr̂ · (p× l) +m2α2 = p2l2 − (p · l)2 − 2mα

r
l · (r× p) +m2α2

= 2mEl2 +
2mαl2

r
− 2mαl2

r
+m2α2 = 2mEl2 +m2α2. (34)

This relation only holds for a 1/r central potential. We may also view it as expressing the
energy in terms of the squares of the conserved vectors A and l :

E =
A2 −m2α2

2ml2
. (35)

5We found p at perihelion by writing p2

2m
= E + α

rmin
= − α

2ρ
(1 − ε2) + α(1+ε)

ρ
⇒ p =

√
mα
ρ

(1 + ε) =
mα
l

(1 + ε) .
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It provides a simple way of obtaining the Bohr spectrum of the hydrogen atom H = p2

2m−
e2

(4πεo)r
.

For circular orbits A2 = 0 and we identify α = e2

4πεo
. Quantization l = n~ then gives the Bohr

spectrum,

En = − me4

(4πεo)22n2~2
. (36)

Pauli got the Bohr spectrum by use of the LRL vector before the Schrödinger equation was
formulated.

1.6 Collision of two gravitating point masses: collision time and universality

• In finding the orbits for the Kepler problem, we avoided the case l = 0 where there is no
angular momentum barrier. We discuss it now. Consider two point masses m1,m2 , subject
only to their mutual gravitational force. Their center of mass moves in a straight line. Energy
of relative motion is

E =
1

2
mṙ2 − α

r
=

1

2
mṙ2 +

l2

2mr2
− α

r
(37)

l is the magnitude of relative angular momentum. For a collision to occur, we need the relative
angular momentum to be zero since it is conserved and is zero at the time of collision, the motion
is purely radial and E = 1

2mṙ
2 − α

r . In this case the effective potential is just V = −α/r and
for E < 0 there is only one turning point at rmax = −α/E . For E ≥ 0 there are no turning
points and the motion can be unbounded.

• Suppose the particle is at r = r0 at t = 0. There are two possibilities, (a) it is given a
radially outward initial velocity or (b) it is given a radially inward initial velocity. In case (a)
the particle will escape to r =∞ if E ≥ 0 or go out and return and collide if E < 0. In case (b)
the particle will collide irrespective of its initial radially inward velocity. In case (a) with E < 0
the particle will return to r0 with radially inward velocity and may be treated from thereon as
in case (b). So we restrict to case (b) with radially inward initial velocity. In this case we know
that E ≥ − α

r0
≥ − α

r(t) since kinetic energy is non-negative and r(t) ≤ r0 as the particle falls
inward. Conservation of energy tells us that

ṙ2 =
2

m

(
E +

α

r

)
(38)

During the motion ṙ ≤ 0, as the particle is falling inward. So we take the negative square-root
and get

ṙ = −
√

2

m

√
E +

α

r
⇒ −

∫ t

0
dt′ =

∫ r

r0

dr′√
2
m

√
E + α

r′

(39)

Since the particle has to cover a finite distance and is speeding up, we expect a collision to happen
in a finite time tc when r reduces to zero. We assume the bodies are point-like, otherwise the
collision will happen a little earlier.

tc =

√
m

2

∫ r0

0

dr√
E + α

r

. (40)

Since the kinetic energy E + α
r > 0 for 0 ≤ r < r0 , the integrand is finite for all 0 ≤ r < r0 .

At r = r0 the integrand is finite as long as the particle has non-zero initial velocity. Even if its
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initial velocity is zero, the integrand has an integrable singularity. So the collision time is finite.
We will find an expression for tc shortly.

• It is also interesting to find the radial distance as a function of time, especially as the collision
time is approached. For this we integrate from t to tc

tc − t =

√
m

2

∫ r

0

dr′√
E + α

r′
. (41)

For t→ tc , r → 0 and the α
r′ term dominates,

tc − t ≈
√
m

2α

∫ r

0

√
r′ dr′ =

2

3

√
m

2α
r3/2 ⇒ r(t) ≈

(
9α

2m

)1/3

(tc − t)2/3 as t→ tc. (42)

We see that the behavior of radial distance just before the collision is independent of the energy
E as well as the initial distance r0 . The power law (tc − t)2/3 is universal and 2/3 is like a
critical exponent. In fact, even if we had a third gravitating mass, it would not affect this result
since its effects are negligible when the other two bodies approach each other. This power law
may be regarded as a collisional version of Kepler’s 3rd law which says that R = K1/3T 2/3 . Both
these power laws are a reflection of the 1/r potential. They are related to a scaling symmetry
(‘mechanical similarity’) of the 1/r potential.

• If r(t) is a solution of Newton’s equation mr̈ = − α
r2 r̂ , then so is s(t) = λ−2/3r(λt), for any

λ > 0 as one checks. In other words, t → λt, r → λ−2/3r (r → λ−2/3r, φ → φ, θ → θ) is a
symmetry of the eom. To discover this symmetry, consider the transformation t → λt, r(t) →
λγr(λt), then ṙ→ λγ+1ṙ and r̈→ λγ+2r̈ and 1

r2 → λ−2γ 1
r2 and r̂ → r̂ . Invariance of the eom

tells us that λγ+2 = λ−2γ or γ = −2/3.

• Finally, we find the collision time tc for purely downward motion. There are two cases (1)
E ≥ 0 and (2) − α

r0
≤ E ≤ 0. (1) If E > 0 we get

tc =

√
m

2α

∫ r0

0

√
r

1 + Er
α

dr =

√
mα2

2E3
τ+ (Er0/α) where s =

Er

α
≥ 0. (43)

We defined the monotonically increasing function

τ+(s0) =

∫ s0

0

√
s

1 + s
ds =

√
s0(1 + s0)− arcsinh

√
s0 for s0 ≥ 0. (44)

τ+(s0)→ 2

3
s
3/2
0 − s

5/2
0

5
+ · · · as s0 → 0 and τ+(s0)→ s0+

1

2
− 1

2
log(4s0)− 3

8s0
+ · · · as s0 →∞.

(2) For − α
r0
≤ E ≤ 0 we get by putting u = −Er

α > 0 and u0 = −Er0
α ,

tc =

√
mα2

2|E|3
τ−

(
−Er0

α

)
where τ−(u0) =

∫ u0

0

√
u

1− u
du = arcsin

√
u0 −

√
u0(1− u0)

(45)
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τ−(u0)→ (2/3)u
3/2
0 as u0 → 0 and τ−(1) = π/2. Combining these two cases,

tc =

√
mα2

2|E|3


[√(

Er0
α

) (
1 + Er0

α

)
− arcsinh

√
Er0
α

]
for E ≥ 0[

−
√(−Er0

α

) (
1 + Er0

α

)
+ arcsin

√
−Er0
α

]
for − α

r0
≤ E ≤ 0.

(46)

Though our formula for tc is given in a piecewise manner, we checked that tc and its derivatives
with respect to E are continuous across E = 0, as the figure below partly indicates.

• If the body falls with zero initial speed (minimal energy E = −α/r0 ), then the collision time is

maximal. Replacing α = Gm1m2 and m = m1m2/M so that α
m = GM , we get tc = π

2

√
r3
0

2GM .
It is reasonable that the time to impact increases with initial separation r0 and decreases with
increasing gravitational coupling and total mass. Imagine a ball falling onto the Earth. In this
case, the reduced mass is approximately the ball’s mass and the total mass is approximately
the Earth’s mass. Then we find that the time of descent from a fixed height is universal,
(approximately independent of the ball’s mass) as discovered by Galileo. Note that the collision
time cannot be exactly independent of the mass of the ball. For, the collision time would then
have to be independent of the mass of the earth as well (the process could be viewed as the earth
rising up and colliding with the ball). But measurements show that objects would fall slower
on a lighter planet. The above formula for tc keeps its peace with Galileo’s observation as well
as this reciprocity requirement (Newton’s 3rd law) by depending on the total mass rather than
the individual masses separately. • As the energy grows, tc monotonically decreases to zero.

If E = 0, then tc = 2
3

√
r3
0

2GM . For high energies, the collision time goes to zero in a manner

independent of α , as we’d expect (gravity may be ignored E = 1
2mṙ

2 , and the particle covers a
distance r0 at the uniform speed v = r0/tc )

tc →
√
mr2

0

2E
as E →∞. (47)

2 Conservative systems with one degree of freedom on a line

• Newton’s 2nd law for a particle moving on a line is

mẍ = F. (48)

If the force depends only on location F = F (x) and not, say on velocity (as the magnetic Lorentz
force does), then in one dimension, we may define a potential function such that F (x) = −V ′(x)
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or

V (x) = −
∫ x

0
F (x′) dx′. (49)

In one dimension, a force that is the derivative of a potential is called a conservative force. V (x)
is of course defined up to an additive constant which we fixed here by V (0) = 0. In this case,
Newton’s equation becomes mẍ + V ′(x) = 0 and using the integrating factor ẋ , we find that
energy E = 1

2mẋ
2 + V (x) is conserved.

Time-reversal invariance. The equation ẍ = −V ′(x) is time-reversal invariant in the sense
that if x(t) is a solution, then so is x(−t). In other words, a movie of a solution played
backwards is also an admissible motion. Under time reversal, for a conservative system, the
familiar physical quantities transform as follows

t→ −t, x→ x, ẋ→ −ẋ, ẍ→ ẍ, F (x)→ F (x), V (x)→ V (x), E → E. (50)

• Of course, not every system is conservative. E.g. consider a particle that moves under the
influence of both a conservative force as well as a frictional force proportional to its velocity

mẍ = −V ′(x)− γẋ with γ > 0. (51)

The friction term breaks the time-reversal invariance of this equation. In this case we may show
that the above-defined energy is monotonically decreasing. Multiplying by ẋ we get

d

dt

(
1

2
mẋ2 + V (x)

)
= −γẋ2 ≤ 0. (52)

The steady state solutions (time independent solutions ẋ ≡ 0) are at extrema of the potential
x = x0 where V ′(x0) = 0. For generic initial conditions (other than, for example, starting at
rest at a maximum of V ) the particle will execute damped oscillations and settle down at a
local minimum of the potential.

2.1 Time period of oscillations between turning points

• Consider a particle moving on a line in a potential V (x) that is differentiable, bounded below
(say with global minimum V = 0), and tends to infinity as x→ ±∞ . The equation of motion
mẍ = −V ′(x) admits the conserved energy E = 1

2mẋ
2 +V (x). For any fixed energy E > 0, the

particle oscillates between a pair of adjacent turning points x1, x2 where V (x1) = E = V (x2),
i.e., kinetic energy vanishes6. There may be several such pairs of t.p.s. The solution of the eom
reduces to quadrature. If the IC is x(t0) = x0

t− t0 = ±
∫ x(t)

x(t0)

dx√(
2
m

)
(E − V (x))

. (53)

6At the left turning point V ′(x1) < 0 and at the right turning point V ′(x2) > 0. We do not include points
x∗ where V is an extremum V ′(x∗) = 0 as turning points even if E = V (x∗) . So for x∗ to be a t.p. we need
V ′(x∗) 6= 0. The reason is that the particle typically takes an infinite amount of time to reach an extremum
of the potential and does not ‘turn back’ in finite time. In particular, we do not admit ±∞ as turning points.
However, such extremal turning points may be treated as limiting cases
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We must choose the + sign if the initial velocity is rightward and − sign if the initial velocity
is leftward.

• The time to go from t.p. x1 to x2 and from x2 to x1 are equal (by time reversal invariance
of Newton’s equation or just by looking at the integrals below)

Tx1→x2 =

√
m

2

∫ x2

x1

dx√
E − V (x)

= Tx2→x1 = −
√
m

2

∫ x1

x2

dx√
E − V (x)

(54)

Let us check that these times are finite. The range of integration is finite and the integrand
is finite as long as x 6= x1,2 as we are dividing by the square-root of the non-zero kinetic
energy. The integrand diverges only at the t.p.s. Near the left turning point x1 , V (x) =
V (x1) + V ′(x1)(x − x1) + · · · = E − |V ′(x1)|(x − x1) + · · · where V ′(x1) < 0. Thus, when
x & x1 , the integral behaves as √

m

2
|V ′(x1)|

∫ ∗
x1

(x− x1)−1/2dx (55)

which is an integrable singularity. Thus the period of oscillation between t.p. x1 and x2 is finite
and equal to

T (E;x1, x2) =
√

2m

∫ x2

x1

dx√
E − V (x)

. (56)

So a potential determines the function T (E) for E ≥ minx V (x). T (E) may be a multi-valued
function for some values of E since there may be more than one pair of adjacent turning points
for that E . A direct problem is to find T (E) given V (x), this has been reduced to quadrature.

• T (E) may be evaluated explicitly for some potentials. The SHO V (x) = 1
2mω

2x2 is
isochronous, T (E) = 2π

ω θ(E ≥ 0) is independent of E and amplitude. See L & L for more
examples.

2.2 Inverse problem: determination of potential from time period

• The inverse problem of deducing a potential with a given T (E) is much harder7. The potential
V (x) may not be unique. For instance V (x− x0) has the same T (E) as V (x). We could avoid
this non-uniqueness by requiring V (0) = 0 with suitable shifts of x and V . But V could be
non-unique in more non-trivial ways. L & L give an example.

• Besides, we have seen that T (E) is not even single-valued if the potential supports more than
one type of oscillation for a fixed energy (a double well potential for instance). For simplicity,
suppose we seek only those potentials V (x) which are convex, having a single minimum, say
V (0) = 0 and V (x) → ∞ for x → ±∞ . Then T (E) is single-valued and related to V (x) via
energy conservation

T (E) =
√

2m

∫ x2

x1

dx√
E − V (x)

. (57)

Here V (x1) = V (x2) = E are adjacent turning points. We may regard this as a non-linear
integral equation for the unknown function V (x), given T (E).

7A problem of a related sort was solved in going from Kepler’s 3rd law to Newton’s law of gravitation.
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• For simplicity, suppose we only look for a potential that is symmetric V (x) = V (−x)8. In
this case

T (E) = 2
√

2m

∫ x0

0

dx√
E − V (x)

, where V (x0) = E and x0 > 0. (58)

• Interestingly, the above non-linear integral equation can be turned into a linear integral
equation for x′(V ) if we regard x as a function of V . Then dx = x′(V ) dV and x = 0⇒ V = 0
while x = x0 implies V = E :

2
√

2m

∫ E

0

x′(V ) dV√
E − V

= T (E). (59)

This is now an inhomogeneous linear integral equation for f(V ) = x′(V )9. If we are able to

solve this equation, then we may integrate to find x(V ) =
∫ V

0 x′(W )dW . The non-linear part of
the problem is then to invert x(V ) to find V (x). This could be done graphically for instance.

• Remarkably, the above linear integral equation can be solved for x′(V ). The idea to extract
x′(V ) is to multiply either side by a suitable power of (W − E) and integrate over E . We try
(W − E)−1/2 ,

2
√

2m

∫ W

0
dE

∫ E

0
dV

x′(V )√
(E − V )(W − E)

=

∫ W

0
dE

T (E)√
W − E

. (62)

Changing the order of integrals, noting that V ≤ E ≤W and that V ≥ 0 and V ≤W , we get

2
√

2m

∫ W

0
dV x′(V )

∫ W

V

dE√
(E − V )(W − E)

=

∫ W

0
dE

T (E)√
W − E

. (63)

The inner integral is just π (independent of W,V !) upon making the substitution y =
√

W−E
E−V .

Thus

x(V ) =
1

2π
√

2m

∫ V

0

T (E) dE√
V − E

. (64)

So the determination of x(V ) has been reduced to calculating a certain integral transform of
the period function T (E). Finally, we must invert x(V ) to find V (x).

• As a simple illustration, let us ‘discover’ the SHO potential from its isochronous property,
namely T (E) is independent of E . Suppose T (E) = 2π

ω for some constant angular frequency

ω . In this case
∫ V

0
dE√
V−E = 2

√
V . Thus

x(V ) =
1

2π

1√
2m

2π

ω
2
√
V ⇒ V (x) =

1

2
mω2x2. (65)

8It turns out that with this condition V (x) is unique, though there are infinitely many non-symmetric convex
V (x) with the same T (E) . See L & L.

9The integral kernel that appears above K(E, V ) = (E − V )−1/2 is translation invariant, depending only on
E − V :

2
√

2m

∫ E

0

K(E − V )x′(V ) dV = T (E). (60)

Compare with the case of Fourier transform and inverse Fourier transform where the kernel is K(x, k) = eikx :

f(x) =

∫
f̃(k)eikx

dk

2π
⇒

∫
f(x)e−ilxdx =

∫
dk

2π
f̃(k)

∫
dx eikx−ilx = f̃(l). (61)
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2.3 Time delay and (abbreviated) action shift

• So far we considered oscillations or ‘bound states’ where the particle’s energy is such that it
is confined within the potential. Let us briefly consider a case where the particle can escape
to infinity, i.e., a ‘scattering state’. For simplicity consider a potential that tends to zero as
x → ±∞ . Most physically occurring conservative forces arise from such potentials, there are
no forces far from the region of interest. Particularly simple special cases are (1) a ‘repulsive’
potential V (x) > 0, shaped like a speed breaker on a road and (2) an ‘attractive’ potential
V (x) < 0, shaped like a depression/trough on a road. A famous example of such a potential is
V (x) = ±V0sech2(x/l) for V0 > 0, l > 0. Of course, energy E = 1

2mẋ
2+V (x) is conserved. Here

the term ‘repulsive potential’ for V (x) > 0 is meant to intuitively convey that the scattering
region is like a barrier, it repels particles that try to approach it from either side. Calculate the
force for V (x) = V0sech2(x/l) and show that this is the case for V0 > 0.

• We will be interested in situations where the particle comes in from x = −∞ and escapes to
x = ∞ . So we must have E > 0. In fact, we will assume E > maxx V , so that it does not hit
a barrier and rebound. For lower energies, the potential may also support oscillations in some
local minima, as discussed in the previous section.

• A plausible concept that replaces the time period of oscillations is the time it takes for the
particle to go from −∞ to +∞ . But typically, this is infinite. In fact, even a free particle with
any finite velocity takes infinitely long to go from −∞ to +∞ . So a better concept is the time
delay, the excess time it takes the particle to traverse this distance relative to a free particle.
We will see that this is finite as long as the potential falls off sufficiently fast at ±∞ .

• So we first consider the time taken to go from −a to +a with and without a potential

TV (a) =

√
m

2

∫ a

−a

dx√
E − V (x)

and T0(a) =

√
m

2

∫ a

−a

dx√
E
. (66)

Define the (regularized) time delay

∆T (a) = TV (a)− T0(a) =

√
m

2

∫ a

−a

(
1√

E − V (x)
− 1√

E

)
dx. (67)

The time delay is then the limit as a→∞

∆T = lim
a→∞

∆T (a) =

√
m

2

∫ ∞
−∞

(
1√

E − V (x)
− 1√

E

)
dx. (68)

Though the individual times are both infinite, we will show that the difference is finite, if for
large |x| , the particle in potential V behaves nearly like a free particle. Let us examine the
behavior of the integrand for large |x| using the fact that V → 0 as |x| → ∞ . Since E > 0,
|V/E| < 1 for sufficiently large |x| , and

(E−V )−1/2−E−1/2 =
(1− V/E)−1/2√

E
− 1√

E
=

1√
E

(
1 +

V

2E
+ · · ·

)
− 1√

E
→ V

2E3/2
+· · · as |x| → ∞.

(69)

In other words, for large |x| , the integrand is simply proportional to V . So the time delay
will be finite if V (x) is integrable, i.e., if

∫∞
−∞ V dx < ∞ . This will be the case for instance

if V (x) is bounded and decays exponentially fast as |x| → ∞ . In fact, it is sufficient that the
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potential decay as a power law 1/|x|1+ε for any ε > 0. The Coulomb/Newton potential where

E = 1
2mṙ

2 + l2

2mr2 − α
r is on the border-line.

• Notice that the time delay is positive for a purely repulsive potential (V (x) > 0). Suppose
the particle comes in from −∞ with speed v∞ . Then its speed at x is

v(x) =

√
2

m
(E − V ) =

√
v2
∞ −

2V (x)

m
. (70)

So in a purely positive potential, v(x) ≤ v∞ . Under the influence of the potential, the particle
slows down compared to a free particle. So it will take longer to reach +∞ . On the other hand,
in a purely attractive potential V (x) < 0, the time delay is negative. The particle speeds up
compared to the free particle and arrives in advance.

• As in the previous section, one may study the inverse problem of determination of scattering
potential from knowledge of time delay ∆T (E). This too is a problem of solving an analogous
non-linear integral equation, though we do not pursue it here.

• Relation of time delay to action shift: A quantity of some importance in mechanics
(e.g. it appears in the Bohr-Sommerfeld quantization condition) is the abbreviated action, which
may be evaluated for a trajectory between fixed times t1 and t2 , when the particle is at x1 and
x2 .

s =

∫ t2

t1

p ẋ dt =

∫ x2

x1

p(x) dx =

∫ x2

x1

√
2m(E − V (x)) dx. (71)

As before, we assume E > maxxV . Holding x1, x2 fixed, it is evident that the derivative of the
abbreviated action is equal to the time it takes the particle to go from x1 to x2 .

ds
dE

=

√
m

2

∫ x2

x1

dx√
E − V (x)

= Tx1→x2 . (72)

This relation between abbreviated action and duration of trajectory also holds for oscillatory
motion.

• As with the total time, s is infinite for a ‘full’ trajectory between x = ±∞ . So it makes sense
to consider the (abbreviated) action shift

∆s =

∫ ∞
−∞

(√
2m(E − V )−

√
2mE

)
dx (73)

Then the time delay is ∆T = d∆s
dE .

3 From Newtonian to Lagrangian mechanics

3.1 Configuration space, Newton’s laws, phase space, dynamical variables

• Based on the examples studied, we collect some terminology and facts. A point particle
moving in a central force field has three degrees of freedom, we need three coordinates to specify
the location of the particle. The Earth-moon system considered in isolation has six degrees of
freedom. The number of degrees of freedom does not depend on the nature of forces. A fluid in
a container has a very large number of degrees of freedom, say the locations of the molecules,
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it is often treated as a system with infinitely many degrees of freedom. An instantaneous
configuration of the earth-moon system is any possible location of the earth and moon. The set
of all instantaneous configurations of a mechanical system is called its configuration space Q .
For a pair of point particles, Q is the manifold R6 with coordinates given (say) by the cartesian
components of the radius vectors of each of the particles ri1, r

j
2 for i, j = 1, 2, 3. The number of

degrees of freedom is the dimension of the configuration space.

• The zeroth law of classical mechanics can be regarded as saying that the trajectory r(t) of
a particle is a (twice) differentiable function of time. This is a law that applies to planets,
pendulums etc. But it fails for Brownian motion (movement of pollen grains in water). It also
fails for electrons in an atom treated quantum mechanically. The quantum mechanical analogue
of this zeroth law of classical mechanics is that the wave function or propagator (time evolution
operator) is a (once) differentiable function of time. Newton formulated three laws of classical
mechanics in the Principia.

• Newton’s 1st law says that “Every body persists in its state of being at rest or of moving uni-
formly straight forward, except insofar as it is compelled to change its state by force impressed.”
[Isaac Newton, The Principia, A new translation by I.B. Cohen and A. Whitman, University
of California press, Berkeley 1999.]. The quantum mechanical analogue of this law is that the
propagator (time evolution operator) of a free particle is a gaussian. Gaussian propagators
replace straight lines in the quantum theory.

U(r, t; r′, t′) =

(
m

ih(t− t′)

)3/2

exp

[
im|r− r′|2

2~(t− t′)

]
. (74)

• The departure from rest or straight line motion is caused by forces. Newton’s 2nd law says
that the rate of change of momentum is equal to the impressed force, and is in the direction
in which the force acts. For a single particle, the trajectory r(t) = (x1, x2, x3) = (x, y, z) in
cartesian coordinates, satisfies

mr̈ = F or ṗ = F, or mẍi = F i. (75)

Here the momentum p = mv = mṙ . Velocities are tangent vectors to the configuration space.
The form of Newton’s equation changes in curvilinear coordinates. Many interesting forces (such
as gravity) arise as gradients of potential functions, F = −∇V (r). For such ‘conservative’ forces,
energy E = 1

2mṙ2 + V (r) is conserved along trajectories Ė = 0.

• The quantum mechanical analogue of Newton’s second law is Schrodinger’s equation for the
time evolution of the propagator. Forces enter through the potential in the hamiltonian, eg.

H = p2

2m + V :

i~
∂U(t, t′)

∂t
= HU(t, t′). (76)

Recall that the propagator evolves the wave function forward in time U(t, t′)|ψ(t′)〉 = |ψ(t)〉 .
• Newton’s 3rd law says that to every action there is always opposed an equal reaction.

• Being 2nd order in time, Newton’s equation requires both the initial position r and veloc-
ity/momentum p as initial conditions. Knowledge of current position and momentum deter-
mines the trajectory via Newton’s 2nd law. The state of the particle is specified by giving its
instantaneous position and momentum. The set of possible instantaneous states of the particle
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is called its phase space manifold M . For a particle moving in 3D space, its configuration space
is R3 and its phase space is R6 (locations and momenta).

• The path of the particle r(t) (satisfying Newton’s equation and initial conditions) in configu-
ration space is called its trajectory. Also of interest is the trajectory in phase space (~x(t), ~p(t)).
Consider the phase plane trajectories for a free particle with one degree of freedom. Since energy
is conserved, phase space trajectories must lie inside level sets of energy E = p2/2m . But in
general, an energy level set is a union of trajectories. For the free particle, the energy level curves
are horizontal straight lines of fixed p which is conserved. Trajectories come with a direction,
the arrow of time. Draw the phase portrait.

• The components of position, momentum, angular momentum l = r × p and Energy E =
p2

2m + V (r) are interesting physical quantities associated with the dynamics of a particle. They
are examples of dynamical variables or observables. In general, a dynamical variable is a (usually
smooth) function on phase space. For a single particle dynamical variables may be regarded
as functions f(r,p). The potential V (r) is a function on configuration space and so also a
function on phase space. xi are called coordinate functions on configuration space. xi, pj are
called coordinate functions of phase space. Conserved quantities are dynamical variables that
are constant along every trajectory. Of course, the value of a conserved quantity may differ from
trajectory to trajectory.

3.2 Lagrangian formulation and principle of extremal action

• The principle of extremal action provides a powerful reformulation of Newton’s 2nd law,
especially for systems with conservative forces. It leads to Lagrange’s equations of motion,
which are equivalent to Newton’s 2nd law. One advantage of Lagrange’s equations is that they
retain the same form in all systems of coordinates on configuration space.

• The idea of the action principle is as follows. A static solution (time independent trajectory) of
Newton’s equation for a particle in a potential mẍ = −V ′(x) occurs when the particle is located
at an extremum of the potential. The action principle gives a way of identifying (possibly)
time-dependent trajectories as extrema of an action function. However, unlike the potential,
the action is not a function on configuration space. It is a function on the space of paths on
configuration space. Suppose qi(t) for ti ≤ t ≤ tf is a path on Q . It is common to use qi

(instead of xi ) for coordinates on configuration space. qi need not be cartesian coordinates of
particles, any system of coordinates will work. Then the action is typically a functional of the
form

S[q] =

∫ tf

ti

L(qi, q̇i) dt. (77)

Here L(qi, q̇i) is called the Lagrangian of the system, a function of coordinates and velocities.
For a suitable L (invariably the difference between kinetic and potential energies, L = T − V )
Newtonian trajectories are extrema of S .

• In other words, we consider the problem of determining the classical trajectory that a particle
must take if it is at qi at ti and qf at tf . Instead of specifying the initial velocity, we give the
initial and final positions at these times. Which among all the paths that connect these points
solve Newton’s equation? The action (variational) principle says that classical trajectories are
extrema of S . Note that unlike the initial value problem where qj(ti), q̇

j(ti) are specified,
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this initial-final value problem (where qj(ti) and qj(tf )) are specified, may not have a unique
solution. The action may have more than one extremum. Give an example!

• To understand this idea, we need to determine the conditions for S to be extremal. These
conditions are called Euler-Lagrange equations. In the static case, the condition for V (x) to be
extremal is that its change under an infinitesimal shift δx of x must vanish to first order in δx ,
this turns out to be the condition V ′(x) = 0.

• The Euler-Lagrange equations are got by computing the infinitesimal change in action δS
under a small change in path qi(t)→ qi(t) + δqi(t) while holding the initial and final locations

qi(ti), q
i(tf ) unchanged. Assuming the variation in the path is such that dδq(t)

dt = δq̇ , we get

δS =
n∑
i=1

∫ tf

ti

dt′
{
∂L

∂qi
δqi(t′) +

∂L

∂q̇i
δq̇i(t′)

}
+O(δq)2

=

∫ tf

ti

δqi(t′)

(
∂L

∂qi
− d

dt′
∂L

∂q̇i

)
dt′ + δqi(tf )

∂L

∂q̇i(tf )
− δqi(ti)

∂L

∂qi(tf )
+O(δq)2 (78)

We integrated by parts to isolate the coefficient of δq . The last two ‘boundary terms’ are zero
due to the initial and final conditions and so the condition δS = 0 can be reduced to a condition
that must hold at each time, since δqi(t′) are arbitrary at each intermediate time. So choosing,
roughly, δqi(t′) = 0 except for a specific time t′ = t we get the Euler-Lagrange (EL) (or just
Lagranges’s) equations

∂L

∂qi(t)
− d

dt

∂L

∂q̇i(t)
= 0, i = 1, 2, . . . n. (79)

• Now let us see how the principle of extremal action implies Newton’s equation of motion for
a particle in a potential, by a suitable choice of L . Comparing mq̈ = −V ′(q) with the EL
equation d

dt
∂L
∂q̇ = ∂L

∂q we notice that if we choose L = 1
2mq̇

2 − V (q), then

∂L

∂q̇
= mq̇ and

∂L

∂q
= −V ′(q) (80)

and the EL equation reduces to Newton’s equation.

3.3 Conjugate momentum and its geometric meaning, cyclic coordinates

• The momentum pi conjugate to the coordinate qi is defined as

pi =
∂L

∂q̇i
(81)

In general conjugate momenta do not have the dimensions MLT−1 , just as generalized coordi-
nates qi do not necessarily have dimensions of length. Conjugate momentum is a useful concept.
The momentum pj conjugate to a coordinate qj that does not appear in the Lagrangian is au-
tomatically conserved.

d

dt

∂L

∂q̇j(t)
=

∂L

∂qj(t)
= 0. (82)

Such a coordinate is called a cyclic coordinate. For example for a free particle moving on line
L = 1

2mẋ
2 has the cyclic coordinate x leading to the conservation of the conjugate momentum

px = mẋ , ṗx = 0.
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• Geometrically, the trajectory qi(t) is a curve on configuration space. At any instant of time
q̇i(t) is a tangent vector to this curve. In general, the generalized velocities are tangent vectors
to the configuration space. On the other hand, the generalized momenta pi are called co-tangent
vectors, they are elements of the vector space dual to the tangent space. Tangent and cotangent
vectors at the same point of the configuration space may be contracted to get a number, for
instance piq̇

i is a number at each point of configuration space. This number is independent of
what coordinate system we use on configuration space.

• Not every conserved quantity may arise as the momentum conjugate to a cyclic coordinate.
For example, if we use cartesian coordinates for the particle in a central potential on a plane,
L = 1

2m(ẋ2 + ẏ2)− V (
√
x2 + y2), then neither coordinate is cyclic and neither of the momenta

(px = mẋ, py = mẏ ) are conserved. But as we see below the momentum conjugate to the cyclic
angular coordinate is conserved. So some physical insight/cleverness/luck may be needed in
choosing coordinate systems in which one or more coordinate is cyclic.

3.4 Coordinate invariance of the form of Lagrange’s equations

• For a particle on a plane in a central potential, in polar coordinates we may obtain the kinetic
energy from the square of Euclidean line element ds2 = dr2 + r2dφ2 . So the square of velocity
is (ds/dt)2 = ṙ2 + r2φ̇2 . Hence,

L = T − V =
m

2
(ṙ2 + r2φ̇2)− V (r) (83)

The momenta conjugate to (r, φ) are

pr =
∂L

∂ṙ
= mṙ and pφ =

∂L

∂φ̇
= mr2φ̇. (84)

They coincide with the radial component of linear momentum and the z -component of angular
momentum. The first of Lagrange’s equations is

ṗr = mr̈ =
∂L

∂r
= mrφ̇2 − V ′(r). (85)

This is the balance of radial acceleration, centripetal acceleration and central force. On the
other hand, φ is a cyclic coordinate and so pφ is conserved:

ṗφ =
d

dt
(mr2φ̇) =

∂L

∂φ
= 0 ⇒ mrφ̈ = −2mṙφ̇. (86)

This states the conservation of angular momentum, and involves the so-called Coriolis term
on the rhs when written out. Note that Newton’s equations do not take the same form in all
systems of coordinates. There is no force in the φ̂ direction, yet the naive ‘angular acceleration’
mφ̈ is non-zero. On the other hand, Lagrange’s equations d

dt
∂L
∂q̇i

= ∂L
∂qi

are valid in all systems
of coordinates. We obtained them from the action principle without making any assumption
about what the qi are. So qi could be Cartesian or polar or any other coordinates.

• Let us illustrate the coordinate invariance of the form of Lagrange’s equations and the non-
invariance of the form of Newton’s equations. Consider a free particle on the positive half line
q > 0 with Lagrangian L(q, q̇) = 1

2mq̇
2 . In this case Lagrange’s equation reduces to q̈ = 0.
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Now let us choose a different coordinate system on configuration space, defined by Q = q2 . If
Newton’s equation F = mr̈ were coordinate invariant then we would guess that the equation
of motion for Q must be mQ̈ = 0 since there is no force. But this is not the correct equation
of motion. The correct equation of motion may be obtained by making the change of variable
q → Q in q̈ = 0. Using Q̇ = 2qq̇ and Q̈ = 2qq̈ + 2q̇2 one arrives at

2QQ̈− Q̇2 = 0. (87)

This is the equation of motion written in terms of Q . Notice that it doesn’t have the same form
as Newton’s equation for q .

• On the other hand, let us find the Lagrangian as a function of Q and Q̇ and the resulting
Lagrange equations to see if they give the correct result found above. First we express the
Lagrange function in terms of the new coordinate

L(q, q̇) =
1

2
mq̇2 =

mQ̇2

8Q
= L̃(Q, Q̇). (88)

If the form of Lagrange’s equations are the same in the Q coordinate system we must have

d

dt

∂L

∂Q̇
=
∂L

∂Q
or

mQ̈

4Q
− mQ̇2

4Q2
= −mQ̇

2

8Q2
(89)

Simplifying, we see that Lagrange’s equation agrees with the transformed version of Newton’s
equation 2QQ̈−Q̇2 = 0. So we verified that Lagrange’s equations take the same form in both the
q and Q coordinates. As mentioned above, this is generally true for any choice of coordinates
on configuration space.

• It may be noted that the equations of motion q̈ = 0 and 2Q̈
Q = Q̇2

Q2 are not of the same form,
though they are equivalent. What we found is that the eom, when expressed in terms of the

respective Lagrange functions take the same form: d
dt
∂L
∂q̇ = ∂L

∂q and d
dt
∂L̃
∂Q̇

= ∂L̃
∂Q .

3.5 Hamiltonian and its conservation

• Besides the momenta conjugate to cyclic coordinates, the Lagrangian formulation leads auto-
matically to another conserved quantity, the hamiltonian. For a moment suppose the Lagrangian
depends explicitly on time L = L(q(t), q̇(t), t). Then

dL

dt
=
∂L

∂q
q̇ +

∂L

∂q̇
q̈ +

∂L

∂t
= ṗq̇ + pq̈ +

∂L

∂t
=
d(pq̇)

dt
+
∂L

∂t
⇒ d(pq̇ − L)

dt
= −∂L

∂t
. (90)

So if we define the hamiltonian H = pq̇ − L , then Ḣ = −∂L
∂t . So if the Lagrangian does not

depend explicitly on time, then H is conserved.

• For many of the systems we study, the hamiltonian coincides with energy. Suppose we
consider a system with potential energy V (q) and kinetic energy T = 1

2gij(q)q̇
iq̇j and total

energy E = T + V . Here gij = gji may be taken to be a symmetric tensor, it is a sort of
position dependent mass matrix, usually a positive matrix. For example, even for a free particle

on the plane in polar coordinates (r, θ), gij = m

(
1 0
0 r2

)
is a position dependent matrix. For
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such systems, the kinetic energy defines a Riemannian metric on configuration space. Suppose
the Lagrangian is

L = T − V =
1

2
gij(q)q̇

iq̇j − V (q) (91)

Then one finds that the conjugate momenta are pk = gkiq̇
i and the hamiltonian coincides with

energy

H = pkq̇
k − L = gkiq̇

iq̇k − 1

2
gij q̇

iq̇j + V =
1

2
gij(q)q̇

iq̇j + V (q) = E. (92)

Here we regard the hamiltonian as a function of coordinates and generalized velocities. Later
on when we discuss the Hamiltonian formulation of mechanics, we will eliminate q̇i in favor of
momenta and regard the hamiltonian as a function of coordinates and momenta.

• If the Lagrangian is not bilinear in velocities, (say quadrilinear T = gij q̇
iq̇j + hijklq̇

iq̇j q̇kq̇l ),
then the hamiltonian may not coincide with energy defined as T + V . While the hamiltonian
is always conserved (provided ∂L

∂t = 0), E = T + V may not be conserved and may not be a
particularly interesting physical quantity.

3.6 Non-uniqueness of Lagrangian

• A Lagrangian for a given system of equations is not uniquely defined. For instance, we may
add a constant to L(q, q̇, t) without affecting the EL equations. We may also multiply the
Lagrangian by a constant. Another source of non-uniqueness arises from the freedom to add the
total time derivative of any (differentiable) function F (q, t) to the Lagrangian. The change in
the action is

L→ L+ Ḟ ⇒ S → S +

∫ tf

ti

dF

dt
dt = F (q(tf ), tf )− F (q(ti), ti) (93)

But this quantity has zero variation since ti, tf , q(ti), q(tf ) are all held fixed as the path is varied.
So the addition of Ḟ to L does not affect the EL equations. Notice that we could not allow F to
depend on q̇ since δq̇(ti), δq̇(tf ) 6= 0 in general and such an F would modify the EL equations.
There is no restriction on the initial and final velocities of the perturbed paths.

3.7 From symmetries to conserved quantities: Noether’s theorem on invariant variational
principles

• Newton/Lagrange equations of classical mechanics have been formulated as conditions for the
action S =

∫
Ldt to be extremal. Many concepts (such as symmetries) may be formulated more

simply in terms of the action/Lagrangian than in terms of the equations of motion.

• If a coordinate qj is absent in the Lagrangian (qj is a cyclic coordinate), then the correspond-
ing conjugate momentum pj = ∂L

∂q̇j
is conserved in time. This follows from Lagrange’s equation

ṗj = ∂L
∂qj

. If the Lagrangian is independent of a coordinate, then in particular, it is unchanged

when this coordinate is varied δL = 0 under qj → qj + δqj . We say that translations of qj are
a symmetry of the Lagrangian. This relation between symmetries and conserved quantities is
deeper, it goes beyond mere translations of a coordinate.

• A transformation of coordinates qi → q̃i is a symmetry of the equations of motion (eom) if it
leaves them unaltered: i.e., the eom for q̃ is the same as that for q . Symmetries usually allow
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us to produce new solutions from known ones. For example, the free particle equation mq̈ = 0
is left unchanged by a translation of the coordinate q → q̃ = q + a for any constant length a .
Now q = 0 is one static solution. We may use the symmetry under translations to produce other
static solutions, namely q = a for any a , i.e., the particle is at rest at location with coordinate a
rather than at the origin. Incidentally, the momentum of a free particle is conserved in time. We
will see that such symmetries are associated with conserved quantities. On the other hand, the
equation of motion of a particle attached to a spring mq̈ = −kq is non-trivially modified by a
translation of the coordinate q → q̃ = q+a since q̃ satisfies a different equation m¨̃q = −kq̃+ka .
Moreover, p = mq̇ is not (in general) conserved for a particle executing simple harmonic motion,
the momentum is zero at the turning points and maximal at the point of equilibrium.

• It is important to note that not every transformation of q qualifies as a symmetry of the
equations of motion. We have already argued that every transformation of coordinates leaves
the form of Lagrange’s equations invariant. So here, when we say leaves the eom invariant we
are not referring to the form of Lagranges equations i.e., ∂

∂t
∂L
∂q̇ = ∂L

∂q but to the differential
equations written out explicitly (without any Lagrange function present).

• A symmetry of the Lagrangian is a transformation that leaves L unchanged. E.g. the
free particle L = 1

2mq̇
2 is unchanged under the shift q → q + a . It follows that the action

S[q] =
∫ t2
t1

1
2mq̇

2 dt is unchanged under the shift q → q + a . Since the eom are the conditions
for S to be stationary, a symmetry of the Lagrangian must also be a symmetry of Lagrange’s
equations. Noether’s theorem constructs a conserved quantity associated to each infinitesimal
symmetry of the Lagrangian10. Let us see how. Suppose the infinitesimal change qi → qi + δqi

leaves the Lagrangian unchanged to linear order in δq . Then it is automatically an infinitesimal
symmetry of the action. Let us explicitly calculate the first variation of the action for paths
between the times t1 and t2 , S[q + δq] = S[q] + δS[q] . Up to terms of order (δq)2 we get

δS =

∫ t2

t1

[
δqi

∂L

∂qi
+ δq̇i

∂L

∂q̇i

]
dt =

∫ t2

t1

[
δqi

∂L

∂qi
+
d

dt

(
δqi

∂L

∂q̇i

)
− δqi d

dt

∂L

∂q̇i

]
dt

= δqi(t2)
∂L

∂q̇i
(t2)− δqi(t2)

∂L

∂q̇i
(t1) +

∫ t2

t1

δqi
[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
dt (94)

So far, this is true for any path and for any infinitesimal change δqi . Let us now specialize to
infinitesimal changes about a trajectory, so that qi(t) satisfies Lagrange’s equations and the last
term vanishes. Further more, we assume that the transformation is an infinitesimal symmetry
of the Lagrangian, so that δS = 0:

0 = δS = δqi(t2)
∂L

∂q̇i
(t2)− δqi(t2)

∂L

∂q̇i
(t1). (95)

Since t1, t2 are arbitrary, the quantity δqi ∂L
∂q̇i

must be constant along a trajectory. In other
words, an infinitesimal symmetry q → q + δq of the Lagrangian implies that the quantity
Q = pi(t)δq

i(t) = ~p · δ~q is a constant of the motion, i.e. the dynamical variable Q has the same
value at all points along a trajectory.

• E.g. 1: We already saw that the free particle Lagrangian is translation invariant with δqi = ai

where ai are the components of an arbitrary infinitesimal vector. It follows that Q = aipi =

10There is a generalization to the case where the Lagrangian changes by a total time derivative, which we will
discuss.
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~p · ~a is a conserved quantity. In other words, the component of momentum in any direction is
conserved.

• E.g. 2: Now consider a particle in a central potential V (q2) so that the Lagrangian is

L(q, q̇) =
1

2
mq̇ · q̇− V (q · q) (96)

Let us first show that L is invariant under rotations of three dimensional space ~q → R~q where
R is any SO(3) rotation matrix (RtR = I, detR = 1). Recall that the dot product is defined as
a ·b = atb for any column vectors a,b and that (Ra)t = atRt for any matrix R and t denotes
transposition. Thus

L(Rq, Rq̇) =
1

2
mq̇RtRq̇− V (qtRtRq) =

1

2
mq̇tq̇− V (qtq) = L(q, q̇). (97)

So the Lagrangian is invariant under rotations. Noether’s theorem, however, refers to infinitesi-
mal transformations, rotations in this case. So let us find a formula for an infinitesimal rotation.

• Suppose we make an infinitesimal rotation of the vector q about the axis n̂ by a small angle θ
counter-clockwise. Then the vector q sweeps out a sector of a cone. Suppose q makes an angle
φ with respect n̂ , so that the opening angle of the cone is φ . Then the rotated vector q̃ also
makes an angle φ with respect to the axis n̂ . Let δq = q̃− q be the infinitesimal change in q .
By looking at the base of this cone, we find that it is a sector of a circle with radius q sinφ and
opening angle θ . So we find that |δq| = θq sinφ . Moreover δq points in the direction of n̂× q .
Thus, under a counter-clockwise rotation about the axis n̂ by a small angle θ , the change in q
is

δq = θ n̂× q and δq̇ = θ n̂× q̇ (98)

In particular, we see that δq and δq̇ are orthogonal to q and q̇ respectively.

• Now let us check that the Lagrangian is invariant under infinitesimal rotations:

L(q + δq, q̇ + δq̇) ≈ 1

2
mq̇2 +

1

2
mq̇ · δq̇ +

1

2
mδq̇ · q̇− V (q2 + q · δq + δq · q) = L(q, q̇) (99)

The last equality follows on account of the orthogonality properties just mentioned. Thus the
Lagrangian (and action) are invariant under infinitesimal rotations. The resulting conserved
quantity from Noether’s theorem is

Q = ~p · θ (n̂× ~q) = θ n̂ · (~q × ~p) = θ ~L · n̂. (100)

Since Q is conserved for any small angle θ and for any axis of rotation n̂ , we conclude that
the component of angular momentum in any direction is conserved. So the angular momentum

vector is a constant of motion d~L
dt = 0, a fact we are familiar with from the Kepler problem for

the 1/r central potential. We also knew this since the torque ~r × ~F on such a particle about
the force centre vanishes: the moment arm and force both point radially.

3.8 Generalization of Noether’s theorem when Lagrangian changes by a total time deriva-
tive

• As before, consider an infinitesimal transformation q → q + δq which is a symmetry of the
equations of motion. In other words, if q(t) is a solution of the eom, then so is q + δq for small
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δq . Interestingly, even if the Lagrangian is not invariant under this transformation, but changes
by a total time derivative δL = dK

dt , then we have a conserved quantity

Q = pi δq
i −K. (101)

Let us see why this is the case. Consider the action for a path between times t1 and t2 . As
before we may compute the change in action due to an infinitesimal variation of path δq

δS =

∫ t2

t1

[
∂L

∂q
δq +

∂L

∂q̇
δq̇

]
dt =

∫ t2

t1

[(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq +

d

dt

(
∂L

∂q̇
δq

)]
(102)

Now suppose the path happened to be a trajectory satisfying Lagrange’s equations, then the
first term vanishes and the change in action under the above transformation is

δS = (p δq)(t2)− (p δq)(t1). (103)

Note that in general, the action will not be invariant under this transformation. It is also
important to bear in mind that the variation δq need not vanish at t1 and t2 . The infinitesimal
change δq knows nothing about t1 , t2 , it is not the type of variation one considers while deriving
the EL equations.

• Now we have another way of computing the infinitesimal change in action around a trajectory,
due to the above transformation,

δS =

∫ t2

t1

δL dt =

∫ t2

t1

dK

dt
dt = K(t2)−K(t1). (104)

Equating these two expressions for δS we find

pi(t2) δqi(t2)−K(t2) = pi(t1) δqi(t1)−K(t1). (105)

Since t1, t2 are arbitrary, we conclude that the quantity Q(t) = piδq
i − K is a constant of

motion, Q̇ = 0.

• Let us illustrate with the example of a Galilean boost for a free particle. Consider a free particle
in 1D with Lagrangian L = 1

2mẋ
2 and equation of motion mẍ = 0. Define the infinitesimal

Galilean boost
x→ x̃ = x+ δx = x+ ct (106)

where c is a small speed. Then

δx = ct, δẋ = c, and δẍ = 0. (107)

It follows that the transformation leaves the equation of motion unchanged since m¨̃x = mẍ = 0.
So a Galilean boost is a symmetry of the equation of motion. The corresponding change in the
Lagrangian is a total time derivative

δL = mẋ δẋ = mcẋ =
d

dt
(mcx). (108)

So we may take K = mcx (K is defined up to an additive constant). The above theorem asserts
that

Q = p δx−K = p δx−mcx = c(pt−mx) (109)
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is a constant of motion. Since c is an arbitrary small constant, we drop it and take Q = pt−mx .
We check using the equation of motion ( ṗ = 0) that Q is indeed conserved:

Q̇ = ṗt+ p−mẋ = p− p = 0. (110)

A Galilean boost is a symmetry also for a particle subject to a constant force, where V (x) =
V0x is linear. But it is not a symmetry of the equation of motion mẍ + V ′(x) = 0 for a
particle in a more general potential. Though δẍ = 0, δV ′(x) = V ′′(x)ct 6= 0 in general. A
simple harmonic oscillator potential, for instance, breaks Galilean invariance, just as it breaks
translation invariance.

3.9 Hamilton’s equations & relation to geodesics for free particle

• We introduced the hamiltonian H = piq̇
i−L(q, q̇) as an interesting conserved quantity implied

by Lagrange’s equations. Here pi = ∂L
∂q̇i

. To understand H better, let us compute its differential
using Lagrange’s equations

dH = pidq̇
i + q̇idpi −

∂L

∂qi
dqi − ∂L

∂q̇i
dq̇i = pidq̇

i + q̇idpi − ṗidqi − pidq̇i = −ṗidqi + q̇idpi (111)

This reveals that the independent variables in H are the generalized coordinates qi and the
generalized momenta pi , the terms involving the differentials of velocities cancelled out. So we
should think of H as H(q, p). Now by the definition of partial derivatives,

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi. (112)

Comparing, we find that the time derivatives of coordinates and momenta may be expressed in
terms of partial derivatives of the Hamiltonian

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
(113)

• These first order ODEs are called Hamilton’s equations. They give us yet another way
of expressing the equations of time evolution. To make sense of these equations we are first
supposed to express H = piq̇

i−L(qi, q̇i) as a function of qj and pj . This is done by eliminating
q̇i in favor of q, p using the definition of conjugate momenta pj = ∂L

∂q̇j
.

• If the L and H depend explicitly on time, then the differential of the hamiltonian is

dH = q̇dp− ṗdq − ∂L

∂t
dt and dH =

∂H

∂q
dq +

∂H

∂p
dp+

∂H

∂t
dt. (114)

Comparing, we get

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
and

∂H

∂t
= −∂L

∂t
. (115)

So even for a time-dependent H , hamilton’s equations for coordinates and momenta take the
same form.

• E.g. particle in a 1D potential. Then L = 1
2mq̇

2 − V (q) and p = mq̇ so q̇ = p/m . Then

H = pq̇−L = pp/m− p2/2m+V (q) = p2/2m+V (q). Hamilton’s equations are q̇ = ∂H
∂p = p/m
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which recovers the definition of conjugate momentum and ṗ = −∂H
∂q = −V ′(q) which is Newton’s

second law.

• More generally, suppose L = 1
2gij ẋ

iẋj − V (x) where gij is a symmetric positive (and hence
invertible) matrix field on Q . Then we find pi = gij ẋ

i . Solving for the velocities we get
ẋi = gijpj where gij is the inverse of the metric, gijg

jk = δki . Then

H = piẋ
i − L = pig

ijpj −
1

2
gijg

ikpkg
jlpl + V (x) =

1

2
gijpipj + V (x). (116)

Hamilton’s equations then read

ẋi =
∂H

∂pi
= gijxj and ṗi = −∂H

∂xi
= −1

2
pkpl

∂gkl

∂xi
− ∂V

∂xi
(117)

To explore the geometric and physical meaning of Hamilton’s equations, let us consider the case
V = 0 where there is no external force. Then Newton’s 1st law applies and the trajectories
must be straight lines on configuration space. Of course, Q is in general, a curved manifold. So
straight lines must be interpreted as geodesics with respect to the metric gij . Hamilton’s (and
Lagrange’s) equations must reduce to the geodesic equation for the coordinates (ẍl + Γlij ẋ

iẋj =
0). Let us see whether this is the case. Since we want second order equations for x we look at
Lagrange’s equations:

ṗk =
∂L

∂xk
=

1

2
gij,kẋ

iẋj (118)

where , k denotes partial differentiation ∂
∂xk

. Now pk = gkj ẋ
j , so

ṗk = gkj,iẋ
iẋj + gkj ẍ

j (119)

Thus the equations of motion are

gkj ẍ
j =

[
1

2
gij,k − gkj,i

]
ẋiẋj . (120)

Multiplying by the inverse metric glk and summing on k ,

ẍl = glk
[

1

2
gij,k − gkj,i

]
ẋiẋj =

1

2
glk [gij,k − gkj,i − gki,j ] ẋiẋj . (121)

Here we used the symmetry of ẋiẋj to write gkj,i = 1
2(gkj,i + gki,j). Thus Lagrange’s equations

reduce to the geodesic equation

ẍl + Γlij ẋ
iẋj = 0 where Γlij =

1

2
glk [gki,j + gkj,i − gij,k] (122)

are the Christoffel symbols.

3.10 Hamiltonian from Legendre transform of Lagrangian

• The Legendre transform gives a way of summarizing the passage from Lagrangian to Hamil-
tonian. Notice that the definition of conjugate momentum p = ∂L

∂q̇ is the condition for pq̇−L to
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be extremal with respect to small variations in q̇ . Moreover, the extremal value of this function
is the hamiltonian H(q, p). Thus, we may write

H(q, p) = extq̇
[
piq̇

i − L(q, q̇)
]

(123)

The extremization is carried out with respect to all the generalized velocities. The key step in
the Legendre transform is to solve for the velocities in terms of the momenta and coordinates
using pi = ∂L

∂q̇i
. This is not always possible. It could happen that there is none or more than

one solution q̇ for given q, p . Then H would not be a single-valued function of coordinates and
momenta. A condition that guarantees that the Legendre transform exists as a single-valued
function is convexity (or concavity) of the Lagrangian as a twice differentiable function of q̇ . L

is convex provided the 2nd derivative (hessian) matrix ∂2L
∂q̇i∂q̇j

is a positive matrix everywhere

on Q . This condition is satisfied by L = 1
2mq̇

2 if m > 0. Here pq̇ − L is a quadratic function
of q̇ and has a unique extremum for any p . More generally if L = 1

2gij(q)q̇
iq̇j + V (q), then the

hessian is just the metric tensor gij(q). So positivity of the kinetic energy metric on Q ensures
convexity of the Lagrangian. We have already seen that in this case the Hamiltonian may be
obtained as a single valued function of coordinates and momenta H = 1

2g
ijpipj + V (q).

• On the other hand, let us attempt to compute the Legendre transform of L = 1
4 q̇

4 − 1
2 q̇

2 .
We expect to run into trouble. Indeed, there is often more than one solution q̇ for a given p
when we try to solve for q̇ in p = ∂L

∂q̇ = q̇3 − q̇ . In this case, the Legendre transform H is not
single-valued.

• When the Legendre transform is defined, the Lagrangian can be re-obtained from H(q, p) by
an (inverse) Legendre transform

L(q, q̇) = extp [pq̇ −H(q, p)] . (124)

4 Simple pendulum

• Consider a bob of mass m suspended from a massless rigid rod of length l clamped at a pivot.
The bob is free to move in a vertical plane subject to Earth’s gravitational force. This system is
an idealized simple pendulum, it is used in clocks. A heavy pendulum bob (wrecking ball) may
be used to demolish buildings!

• From our experience we know that the pendulum is in stable equilibrium when hanging
vertically downward, the downward gravitational force being balanced by the upward tension
force in the rod. A small push makes the bob-oscillate through small angles, always remaining
close to the equilibrium position. The pendulum is also in equilibrium when it is balanced
vertically upwards. But this is unstable equilibrium, a small push in either direction will take
the bob far from the point of equilibrium.

• We are aware of two distinctive types of motion of a pendulum. (1) Libration: Oscillations
between a pair of turning points around the vertical. In a sense, the bob is bound or trapped near
its point of stable equilibrium. (2) Rotation: if the ‘energy’ or ‘initial speed’ of the pendulum
is above a specific value, the bob may rotate around the pivot, in general at a non-uniform rate
(slower at the top and faster and the bottom). The bob is not trapped near its point of stable
equilibrium and the motion does not have any turning points. This is in a sense an unbound or
‘scattering’ orbit, though the bob cannot escape since the length of the rod is held fixed.
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4.1 Newton’s second law and equation of motion

• Let us denote the counter-clockwise angle of deflection from the stable equilibrium position
by θ . We use a Cartesian coordinate system with y vertically upwards, x to the right.

Figure 1: Simple pendulum with bob of mass m suspended from a fixed support with massless rod of
length l .

• The vertically downward force due to gravity mg is resolved into a radial component mg cos θ
and a tangential component mg sin θ . The bob is at fixed radial distance l from the pivot, so
it undergoes no radial acceleration. The radial component of the gravitational force is balanced
by the tension in the rod and the centripetal force mlθ̇2 . The tangential component of the
gravitational force tends to reduce the angle of deflection and causes the bob to accelerate
towards its equilibrium position. Suppose s = lθ is the arc length corresponding to deflection
angle θ . Then the tangential velocity of the bob is ds

dt = ṡ = lθ̇ and its acceleration is lθ̈ .
Newton’s second law then says that

~F = m~a ⇒ −mg sin θ = mlθ̈. (125)

From this we find the equation of motion of a simple pendulum

θ̈ = −g
l

sin θ. (126)

• The mass of the bob cancelled out, so the time dependence of θ , and the motion of the
pendulum is independent of m ! In particular, the time period of oscillation (which we will
determine) is independent of the mass. This was discovered experimentally by Galileo around
1602. The equation of motion is second order in time but very non-linear. Even before trying
to solve it, we may determine many qualitative features of the motion.

4.2 Energy, Lagrangian, angular momentum

• Energy is conserved during the motion. Multiplying the equation by θ̇ , we get

θ̇θ̈ = −ω2 sin θ θ̇ ⇒ 1

2

d

dt
θ̇2 = ω2 d

dt
cos θ ⇒ d

dt

[
1

2
θ̇2 − ω2 cos θ

]
= 0. (127)

Multiplying by ml2 for dimensional reasons, we get the conserved quantity

E =
1

2
ml2θ̇2 −mgl cos θ (128)
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E may be interpreted as the total energy of the system. Recall that the kinetic energy is

KE =
1

2
mv2 =

1

2
mṡ2 =

1

2
ml2θ̇2 and the potential energy PE = V (θ) = −mgl cos θ. (129)

We have chosen the potential energy to be zero at the level of the pivot. So the potential energy
is −mgl when the pendulum is hanging downwards and equal to mgl when pointing vertically
upwards.

• The extrema of the potential energy V (θ) = −mgl cos θ are equilibrium positions where the
pendulum is stationary. Now V ′(θ) = mgl sin θ = 0 when θ = 0, π , corresponding to the
bob pointing vertically downwards and vertically upwards. The former is a local minimum of
the potential (stable equilibrium). The latter is a local maximum of the potential (unstable
equilibrium).

• The pendulum admits a Lagrangian description. If we put

L = T − V =
1

2
ml2θ̇2 +mgl cos θ. (130)

Then we see that the momentum conjugate to θ is pθ = ml2θ̇ and Lagrange’s equation reduces
to Newton’s second law

ṗθ = −mgl sin θ ⇒ θ̈ = −g
l

sin θ. (131)

• pθ is the z -component of angular momentum about the pivot. Let r be the radius vector of
the bob with pivot as the origin and p its linear momentum, then angular momentum is

L = r× p = mvrẑ = ml2θ̇ ẑ ≡ pθẑ where pθ = ml2θ̇. (132)

Angular momentum is not conserved since there is a non-zero torque r×F about the pivot. The
force on the bob is the resultant of the radially inward tension and vertically downward force of
gravity, but only gravity provides a non-zero torque that tends to restore the pendulum to its
equilibrium position.

~τ = r× F = −lmg sin θ ẑ (133)

Thus angular momentum varies according to the differential equation

dL

dt
= ~τ =⇒ dpθ

dt
= −mgl sin θ. (134)

If we use pθ = ml2θ̇ , this is the same equation as Newton’s second law.

• Though angular momentum is not conserved in general, it becomes a ‘better conserved quan-
tity’ as the energy increases. In the limit of high energies E � mgl , where most of the energy is
kinetic 1

2ml
2θ̇2 � mgl , we may ignore the small gravitational force and it produces a negligible

torque. Angular momentum pθ is conserved in this limit and the pendulum executes uniform
circular motion at high angular speed θ̇ � ω .

4.3 Hamilton’s equations and phase portrait

• The simple pendulum also admits a hamiltonian formulation. The phase space variables are
θ and pθ and the hamiltonian is

H(θ, pθ) = extθ̇

[
pθθ̇ − L

]
=

p2
θ

2ml2
−mgl cos θ. (135)
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Figure 2: Angular momentum vs time for simple pendulum rotational motion m = l = g = 1 and low
and high energies. Notice that it becomes a better conserved quantity at high energies.

Hamilton’s equations are a pair of first order differential equations, they contain the same
information as Newton’s 2nd order equation,

dθ

dt
=
∂H

∂pθ
=

pθ
ml2

and
dpθ
dt

= −∂H
∂θ

= −mgl sin θ. (136)

The phase space variables θ, pθ completely characterize the current state of the pendulum and
their values along with this pair of equations determine the future motion of the pendulum.

• The set of possible values of (θ, pθ) comprise the phase space. θ can take any value from −π
to π . ±π both correspond to a pendulum that is vertically upward at the instant considered.
So the possible orientations of the pendulum are parametrized by points on a circle S1 .

• Angular momentum pθ = ml2θ̇ can take any real value (positive or negative). If pθ = 0, the
pendulum has zero angular velocity, as when it is at rest in equilibrium. A positive value of
pθ corresponds to a bob that rotates counter clockwise, the faster it goes round the pivot, the
higher pθ is. If pθ < 0, the bob rotates clockwise.

• The instantaneous state of a pendulum is determined by a point in the cartesian product
S1 × R , i.e., an infinite cylinder which is the phase space of a simple pendulum. The motion of
the pendulum defines a curve (trajectory) (θ(t), pθ(t)) on phase space. It is instructive to plot
the trajectories on phase space. Since the Hamiltonian is a constant of motion, it is constant
along trajectories. So each level curve of the hamiltonian is either a trajectory or a union of
trajectories.

• The trajectory with least energy is the one where the bob is permanently at rest at θ =
0, pθ = 0. As the bob is supplied with more energy, it oscillates about its stable equilibrium
point. Conservation of energy allows us to find the maximum angle of deflection θmax at which
the bob comes instantaneously to rest (turning point)

E = −mgl cos θmax ⇒ θmax = arccos

(
− E

mgl

)
. (137)

We see that energy is an increasing function of θmax . Energy goes from −mgl to mgl as θmax

is raised from 0 to π . When E = mgl we have an unstable equilibrium at the phase point
θ = ±π, pθ = 0. When E > mgl , the bob goes round and round the pivot and there is no
turning point or maximum angle of deflection. The phase portrait is shown in fig 3. Notice the
separatrix that separates the librational trajectories from the rotational ones. The separatrices
consist of the limiting trajectories with energy E ↑ mgl where the bob just makes it to the
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top, either clockwise or counter clockwise. Librational trajectories are contractible curves on
the cylindrical phase space while rotational trajectories are not contractible, they wind around
the cylinder.

Figure 3: Trajectories on cylindrical phase space of simple pendulum. The right θ = π and left θ = −π
edges of the diagram are to be identified, thus producing a cylinder with vertical axis parametrized by
pθ . The value of energy on the level curves is also indicated for m = g = l = 1.

4.4 Divergence of period as E approaches mgl from below

• The time period of librational motion is determined using conservation of energy

E =
1

2
ml2θ̇2 −mgl cos θ ⇒ dt = ±

√
ml2

2

dθ√
E +mgl cos θ

(138)

The maximum angle of deflection is θmax = arccos
(
− E
mgl

)
. Using the fact that E is an even

function of both θ and θ̇ , the period is four times the time taken for the bob to go from θ = 0
to θmax :

T (E) = 4

∫ θmax

0

dθ√
2
ml2

(E +mgl cos θ)
=

2
√

2

ω

∫ θmax

0

dθ√
ε+ cos θ

(139)

where we introduced the dimensionless energy ε = E
mgl . For libration −mgl ≤ E < mgl so

−1 ≤ ε < 1.

• Now, when E approaches mgl from below, θmax → 1− and

lim
ε→1−

T (ε) =
2
√

2

ω

∫ π

0

dθ√
1 + cos θ

. (140)

This integral diverges. The integrand has a non-integrable singularity at θ = π . Indeed, if we
put θ = π− x , then cos(π− x) = − cosx = −1 + 1

2x
2− · · · . So the integrand has a simple pole
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∼ 1
x at x = 0 and the integral diverges. In other words, as the energy approaches mgl , the bob

takes an infinite amount of time to reach the vertically upward position.

• With some more effort one may show that the time period diverges logarithmically as E →
mgl− :

T (ε) = − 2

ω
log

[
1− ε

32

]
+O(1− ε) as ε =

E

mgl
→ 1−. (141)

So the time period diverges, but does so rather slowly. Contrast this with the power-law diver-
gence of the time period T (E) ∼ (−E)−3/2 in the Kepler problem and T (E) ∼ (−E)−1/2 for
the sech2 potential. The time period as a function of θmax as well as energy is plotted in the
figure, showing the slow divergence as θmax → π . As θmax → 0, the period approaches 2π

√
l/g .

4.5 Oscillation through small angles: simple harmonic motion

If the pendulum always remains close to its point of equilibrium, (small oscillations about its
stable equilibrium position), then |θ| � π/2 and we may approximate sin θ ≈ θ . The eom
θ̈ = −ω2 sin θ may be approximated by the linear equation θ̈ = −ω2θ . The general solution is

θ(t) = A cosωt+B sinωt. (142)

A,B are dimensionless constants of integration. They are related to the initial angle and initial
angular velocity by θ(0) = A and θ̇(0) = Bω . Putting A = θmax cosφ and B = θmax sinφ , the
solution is

θ(t) = θmax sin(ωt+ φ) with θ(0) = θmax sinφ and θ̇(0) = ωθmax cosφ. (143)

It is clear that the angle is a sinusoidally oscillating function of time, with a maximum angle
of deflection θmax , called the amplitude. Of course, for the small angle approximation to hold,
θmax must be small compared to π/2. Such motion is called simple harmonic oscillation. An
important feature of simple harmonic oscillation is that the angle is a periodic function of time.
The period of oscillation here is

T = 2π/ω = 2π
√
l/g (144)

The period is the minimum time taken for the pendulum to return to its initial location with its
initial angular velocity (including sign). As mentioned, the period is independent of the bob’s
mass. Just as remarkably, the period is independent of the amplitude θmax . We say that a
pendulum executing small oscillations is isochronous, as discovered experimentally by Galileo.
This is a feature that allowed pendulums to be used as the most accurate clocks (‘chronometers’)
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from the mid 1600s (Huygens, 1656) to the early 20th century. The best pendulum clocks had
an accuracy of about a second per day. They were replaced by clocks based on quartz crystal
oscillators which are still in use and have an accuracy of as much as one second in 30 years.
Atomic clocks based on the frequency of EM waves emitted in atomic transitions are now the
most accurate clocks. The finest are correct to better than one second in 30 million years.

• Pendulums were also used as gravimeters, to measure the variation of the acceleration due to
gravity over the surface of the earth. Indeed it was found that pendulums of the same length
lose time near the equator and gain time at high latitudes, so g is smaller near the equator and
grows with latitude. This is explained by the fact that the earth bulges out near the equator
and is flattened at the poles.

• It was also found empirically that even if the oscillations are not small, the motion is still pe-
riodic, but the time period grows with amplitude θmax . However, the eom θ̈ = −ω2 sin θ cannot
be solved in general using elementary functions like polynomials and trigonometric functions of
time. We need elliptic functions.

4.6 Brief introduction to Jacobi elliptic functions

• The time dependence of the deflection angle of a simple pendulum may be expressed in terms
of the Jacobi elliptic function sn. One way to motivate the Jacobi elliptic functions in via the
differential equations they satisfy. Recall that circular functions may be defined by a pair of
trigonometric evolution equations. They are the following ODEs and initial conditions (primes
here denote differentiation in u)

sin′ u = cosu, cos′ u = − sinu with sin 0 = 0, cos 0 = 1. (145)

The Jacobi elliptic functions (they also arose in finding the arc length of an ellipse) are defined
via a system of 3 ODEs inspired by Euler’s equations for the components of angular momentum
in the principal axis co-rotating frame of a rigid body subject to no external torque. Recall that
L̇ + Ω × L = 0 where L = IΩ . The inertia tensor I = diag(I1, I2, I3) in the principal axis
frame. Eliminating Ω we get

L̇1 + a23L2L3 = 0 where a23 =
1

I2
− 1

I3

L̇2 + a31L3L1 = 0 where a31 =
1

I3
− 1

I1

L̇3 + a12L1L2 = 0 where a12 =
1

I1
− 1

I2
. (146)

Motivated by these equations, we consider three ODEs for the 3 Jacobi elliptic functions
sn(u, k), cn(u, k) and dn(u, k), which are functions of a re-scaled time variable u and the
elliptic modulus k 11

sn′(u, k) = cn(u, k) dn(u, k), cn′(u, k) = − sn(u, k) dn(u, k) and dn′(u, k) = −k2 sn(u, k) cn(u, k).

11For the rigid body, k2 = a12
a23

(
2E−L2

I3

)
(

L2

I1
−2E

) is related to the constants aij depending on the moments of inertia,

conserved energy E =
L2

1
2I1

+
L2

2
2I2

+
L2

3
2I3

and conserved angular momentum L2 = L2
1 + L2

2 + L2
3 .
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Here 0 ≤ k ≤ 1. Primes denote differentiation in u . These are supplemented by initial conditions

sn(0, k) = 0, cn(0, k) = 1, and dn(0, k) = 1. (147)

Just as sin2 u+cos2 u = 1 is a constant of motion for the trigonometric evolution, we have some
constants of motion for the evolution of elliptic functions

sn2 + cn2 = 1, k2 sn2 + dn2 = 1 and dn2 − k2 cn2 = 1− k2. (148)

These quadratic relations are established by explicit differentiation and use of initial conditions.

• We may use these quadratic relations to eliminate cn and dn from the system of ODEs and
get a single ODE for sn with elliptic modulus 0 ≤ k ≤ 1 appearing as a parameter

sn′ = cn dn ⇒ ( sn′)2 = (1− sn2)(1− k2 sn2) ⇒ du =
ds√

(1− s2)(1− k2s2)
(149)

Integrating from 0 to u and using the fact that sn(0) = 0 we express the solution via quadrature

u(s) =

∫ s

0

dt√
(1− t2)(1− k2t2)

(150)

This is called an incomplete elliptic integral, and inverting it gives another way (different from,
but equivalent to the 3 ODEs we began with) of defining the Jacobi elliptic function s = sn(u).
Elliptic functions may also be defined using power series expansions (they are complex analytic
functions of both u and k ) as well as via more geometric constructions.

• To compare with how inverse trigonometric functions are defined, we let k → 0 and see that
the equation for dn becomes dn′(u, 0) = 0 so that dn(u, 0) = 1 and

sn′(u, 0) = cn(u, 0) and cn′(u, 0) = − sn(u, 0) (151)

with initial conditions sn(0, 0) = 0 and cn(0, 0) = 1. So the elliptic functions reduce to
trigonometric functions when the modulus k vanishes

sn(u, 0) = sin(u), cn(u, 0) = cos(u) and dn(u, 0) = 1. (152)

The differential equation becomes

sin′ u =
√

1− sin2 u ⇒ ds√
1− s2

= du ⇒ u =

∫ s

0

dt√
1− t2

= arcsin(s) ⇒ s = sinu.

(153)

• Symmetry under reflection u → −u . We notice that − sn(−u, k), cn(−u, k) and dn(−u, k)
satisfy the same ODEs and initial conditions as sn(u, k), cn(u, k) and dn(u, k). Assuming a
unique solution to the initial value problem we find that sn is an odd function of u while cn, dn
are even

sn(−u, k) = − sn(u, k), cn(−u, k) = cn(u, k) and dn(−u, k) = dn(u, k). (154)

• For use in the pendulum problem, it is convenient to re-write the incomplete elliptic integral
using the fairly natural change of variable kt = sin θ

2 . Then one finds that the elliptic function
s = sn(u, k) results from inverting the incomplete elliptic integral

u(s, k) =
1

2

∫ 2 arcsin ks

0

dθ√
k2 − sin2 θ

2

=
1√
2

∫ 2 arcsin(ks)

0

dθ√
2k2 − 1 + cos θ

. (155)
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• The complete elliptic integral is defined as u(1, k), obtained by letting the upper limit of
integration be maximal. We will see that the period of a pendulum may be expressed in terms
of K(k), the complete elliptic integral of the first kind, defined for 0 ≤ k ≤ 1 by

K(k) =

∫ 1

0

dt√
(1− t2)(1− k2t2)

=
1

2

∫ 2 arcsin k

0

dθ√
k2 − sin2

(
θ
2

) =
1√
2

∫ 2 arcsin k

0

dθ√
2k2 − 1 + cos θ

.

(156)

When the modulus k vanishes, K(0) = arcsin 1 = π/2.

4.7 Time dependence of pendulum in terms of elliptic functions

• The solution of the eom was reduced to quadrature using the constancy of energy

θ̇ =

√
2

ml2

√
E +mgl cos θ ⇒ t− to =

∫ θ(t)

θ(to)

dθ′√
2
ml2

[E +mgl cos θ′]
. (157)

When E < mgl the bob oscillates with a maximum angle of deflection θmax = arccos(−E/mgl).
A phase plot of level curves of energy shows that the motion is periodic with a period given by

T = 4

∫ θmax

0

dθ√
2
ml2

[E +mgl cos θ]
. (158)

• Now let us solve for trajectories of energy E and initial deflection θ(0) = 0 in terms of elliptic
functions. First we pass to dimensionless energy and time variables by defining ε = E/mgl and
τ = ωt where ω =

√
g/l is the angular frequency of small oscillations. Then

τ = ωt =
1√
2

∫ θ

0

dθ′√
ε+ cos θ′

(159)

Comparing with the incomplete elliptic integral for s = sn(u, k),

u =
1√
2

∫ 2 arcsin ks

0

dθ′√
2k2 − 1 + cos θ′

(160)

we read off u = τ , k =
√

1
2(ε+ 1) and θ = 2 arcsin ks . Thus the time dependence of librational

trajectories of a simple pendulum with initial condition θ(0) = 0 is given by

θ(t) = 2 arcsin [k sn(ωt, k)] . (161)

• We check that this reduces to the known sinusoidal trajectory for low energies. If E & −mgl
then k & 0 and the argument of the arcsin is small ( | sn| ≤ 1 since sn2 + cn2 = 1), and we
may replace arcsin(k sn) by k sn. Moreover, for small k , sn(u, k) ≈ sinu , so

θ(t) ≈ 2k sin(ωt) (162)

recovering the small amplitude sinusoidal oscillations of the deflection angle θ(t).

• Notice that the elliptic modulus k is a monotonically increasing function of energy. As E
goes from −mgl to mgl , ε increases from −1 to 1, k increases from 0 to 1 corresponding to
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an amplitude θmax increasing from 0 to π . We plot the angle as a function of time in the figure
for various values of energy holding m, g, l fixed. The increase in period and amplitude with
energy or elliptic modulus k is evident. Also visible is the manner in which for small k the
angle approaches a sine function. As the energy increases, the bob spends more and more time
around the vertically upward position (|θ| . π).

• We already argued that θ(t) is periodic with period T . Let us express T as a complete elliptic
integral

T =
4

ω
√

2

∫ θmax

0

dθ√
ε+ cos θ

=
4

ω
√

2(1 + ε)

∫ θmax

0

dθ√
1− s2

=
4

ω

∫ 1

0

ds√
(1− s2)(1− k2s2)

=
4

ω
K(k)

As before, ks = sin(θ/2) and at the upper limit, cos θmax = −ε implies smax = 1.

• The period is a monotonically increasing function of energy E or k = sin(θmax/2), since the
factor (1 − k2s2) in the denominator decreases as k grows from 0 to 1. This is also evident
from the series expansion since all the coefficients are positive (see Problem set 8)

T = 2π

√
l

g

[
1 +

(
1

2

)2

k2 +

(
1.3

2.4

)2

k4 +

(
1.3.5

2.4.6

)2

k6 + · · ·

]
. (163)

We have already shown that the period of librational motion T (k) diverges as k → 1− .

• Since θ(t) = 2 arcsin[k sn(ωt, k)], it follows that the Jacobi elliptic function sn(u, k) is periodic
with period ωT = 4K(k).

• For ε = E/mgl > 1 we have rotational motion around the pivot, with the bob slowing down
near the top. The motion is again periodic and the period is again given in terms of the complete
elliptic integral of the first kind

Trot =
1

ω

∫ 2π

0

dθ√
2 (ε+ cos θ)

for ε > 1. (164)

The angle as a function of time for rotational motion may be obtained by inverting an incomplete

elliptic integral of the first kind. Assuming θ(t = 0) = 0 and putting k =
√

1+ε
2 ,

t =
1

ω

∫ θ

0

dφ√
2(ε+ cosφ)

. (165)
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5 Hamiltonian mechanics

• We previously defined the hamiltonian H = pq̇ − L in terms of the Lagrangian, and ex-
pressed the eom as 1st order equations using the hamiltonian. Now we begin a deeper study of
hamiltonian mechanics.

5.1 Poisson brackets

• Consider a particle (or system of particles) with configuration space Rn with generalized
coordinates qi and generalized momenta pi = ∂L

∂q̇i
. To motivate the idea of Poisson brackets,

let us use Hamilton’s equations ( q̇i = ∂H
∂pi

and ṗi = −∂H
∂qi

) to find the time evolution of any

dynamical variable f(q, p; t). f is in general a function on phase space, which could depend
explicitly on time.

df

dt
=
∂f

∂t
+

n∑
i=1

(
∂f

∂qi
dqi

dt
+
∂f

∂pi

dpi
dt

)
=
∂f

∂t
+

n∑
i=1

(
∂f

∂qi
∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
=
∂f

∂t
+ {f,H}. (166)

Here we introduced Poisson’s bracket of f with the hamiltonian. More generally, the p.b. of
two dynamical variables gives another dynamical variable defined as12

{f, g} =
n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (167)

So the time derivative of any observable is given by its Poisson bracket with the hamiltonian
(aside from any explicit time-dependence). From here on, we will restrict to observables that
are not explicitly time-dependent (i.e. depend on time only via q(t) and p(t)), unless otherwise
stated. Hamilton’s equations for time evolution may now be written

q̇i = {qi, H} and ṗj = {pj , H}. (168)

If H isn’t explicitly dependent on time, then time does not appear explicitly on the RHS of
hamilton’s equations. In this case, we say that the ODEs for q and p are an autonomous system.

• One advantage of Poisson brackets is that the time evolution of any observable f(q, p) is given
by an equation of the same sort ḟ = {f,H} . We say that the hamiltonian generates infinitesimal
time evolution via the Poisson bracket (more on this later).

f(q(t+ δt), p(t+ δt)) = f(q(t), p(t)) + (δt) {f,H}+O((δt)2). (169)

• If {f, g} = 0 we say that f ‘Poisson commutes’ with g . In particular, f is a constant of
motion iff it Poisson commutes with the hamiltonian, ḟ = 0⇔ {f,H} = 0. We begin to see the
utility of the Poisson bracket in the study of conserved quantities.

• The Poisson bracket has some notable properties. The p.b. of any dynamical variable with a
constant is zero. The Poisson bracket is linear in each entry. Verify that {f, cg} = c{f, g} and
{f, g + h} = {f, g}+ {f, h} etc. where c is a real constant.

12Some authors (e.g. Landau & Lifshitz) define the p.b. with an overall minus sign relative to our definition.
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• The Poisson bracket is anti-symmetric in the dynamical variables {f, g} = −{g, f} . In
particular, the p.b. of any observable with itself vanishes {h, h} = 0. A special case of this
encodes the conservation of energy. Assuming H isn’t explicitly dependent on time,

dH

dt
= {H,H} = 0. (170)

• Since the above formula for the p.b. involves only first order derivatives of f , the p.b. satisfies
the Leibnitz/product rule of differential calculus. Check that

{fg, h} = f{g, h}+ {f, h}g and {f, gh} = {f, g}h+ g{f, h}. (171)

In the Poisson bracket {f, g} we refer to f as the function in the first slot or entry and g as
occupying the second. Anti-symmetry ensures that the Leibnitz rule applies to the second entry
as well. We say that the p.b. is a derivation in either entry.

• The fundamental Poisson brackets are between the basic dynamical variables, namely
coordinates and momenta. The above formulae give for one degree of freedom

{q, p} = 1 or {p, q} = −1, while {q, q} = 0 and {p, p} = 0. (172)

The last two equations are in fact trivial consequences of the anti-symmetry of the p.b. For
n-degrees of freedom we have the fundamental p.b. among the coordinates and momenta

{qi, pj} = δij , and {qi, qj} = {pi, pj} = 0 for 1 ≤ i, j ≤ n. (173)

These are sometimes called the canonical (‘standard’) Poisson bracket relations between coordi-
nates and conjugate momenta. The noun canon and the adjective canonical refer to something
that is standard or conventional.

• Poisson’s theorem: Perhaps the most remarkable feature of the Poisson bracket is that it
can be used to produce new conserved quantities from a pair of existing ones. Poisson’s theorem
states that if f and g are conserved, then so is {f, g} . Let us first illustrate this with a couple
of examples. For a free particle moving on a plane we know that px and py are both conserved.
Their Poisson bracket is {px, py} = 0, which is of course a trivially conserved quantity. As a
second example, consider a particle moving in three dimensions under the influence of a central
potential. We know that Lx = ypz − zpy and Ly = zpx − xpz are both conserved. We compute
{Lx, Ly} by using bi-linearity, the Leibnitz rule and other properties of the p.b. and find
{Lx, Ly} = Lz . And indeed, we know that Lz is also a conserved quantity. Similarly we check
that

{Lx, Ly} = Lz, {Ly, Lz} = Lx and {Lz, Lz} = Ly. (174)

• Jacobi identity: More generally, Poisson’s theorem is a consequence of the Jacobi identity.
For any three dynamical variables f, g and h , the following cyclic sum of ‘double’ Poisson
brackets vanishes:

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0. (175)

Using anti-symmetry we could write the Jacobi identity also as

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0. (176)
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Before we prove the Jacobi identity, let us use it to establish Poisson’s theorem. Suppose
f, g are conserved so that each of them Poisson commutes with the hamiltonian h = H , i.e.,
{f, h} = {g, h} = 0. Then the Jacobi identity implies that

{{f, g}, H} = 0 ⇒ d

dt
{f, g} = 0. (177)

So the p.b. of two conserved quantities is again a conserved quantity.

• Poisson tensor: To prove the Jacobi identity, it is convenient to introduce a compact
notation. Let us combine the coordinates and momenta into a 2n-component ‘grand’ coordinate
ξ on phase space. We regard ξ as a coordinate on phase space and write its components with
upper indices:

~ξ = (ξ1, ξ2 · · · , ξn, ξn+1, · · · , ξ2n) = (~q, ~p) = (q1, · · · , qn, p1, · · · , pn) (178)

Then check the fundamental Poisson bracket relations may be expressed in terms of ξi

{ξi, ξj} = rij where rrow column =

(
0 I
−I 0

)
. (179)

Here r is a 2n× 2n block matrix with n×n blocks consisting of the identity and zero matrices
as indicated. The constant matrix rij is sometimes called the Poisson ‘tensor’ of the canonical
p.b. relations.

• The p.b. of any pair of observables may now be written in terms of the ‘fundamental’ p.b.
between coordinates and momenta. Show that

{f, g} =

n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
=

2n∑
i,j=1

∂f

∂ξi
∂g

∂ξj
{ξi, ξj} =

2n∑
i,j=1

rij∂if∂jg. (180)

Here we used subscripts on f, g to denote partial differentiation, ∂f
∂ξi
≡ fi . All properties of the

canonical Poisson brackets are encoded in the Poisson tensor. Of particular importance to us
is the anti-symmetry of rij (equivalent to antisymmetry of the p.b.) and the constancy of the
components rij .

• Let us now prove the Jacobi identity. We wish to evaluate the cyclic sum

J = {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}. (181)

We use the Poisson tensor and the Leibnitz rule to write the first term of J as

{{f, g}, h} =
(
figjr

ij
)
k
hlr

kl = [fikgjhl + figjkhl] r
ijrkl (182)

Adding its cyclic permutations,

J = [fikgjhl + figjkhl + gikhjfl + gihjkfl + hikfjgl + hifjkgl] r
ijrkl. (183)

If J has to vanish for any smooth functions f, g, h on phase space, then the terms involving 2nd
derivatives of f must mutually cancel as must those involving 2nd derivatives of g or h . So let
us consider the two terms involving second derivatives of f , and call the sum Jf . We find

Jf = fikgjhlr
ijrkl + fjkglhir

ijrkl = fikgjhlr
ijrkl + fikglhjr

jirkl
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= fikgjhlr
ijrkl + fikgjhlr

lirkj = fikgjhlr
ijrkl + fkigjhlr

lkrij

= fikgjhlr
ijrkl − fikgjhlrijrkl = 0. (184)

We relabeled indices of summation i ↔ j , j ↔ l and i ↔ k in the three successive equalities

and finally used the equality of mixed partial derivatives ∂2f
∂ξiξk

= ∂2f
∂ξkξi

and antisymmetry of

the Poisson tensor rkl = −rlk . Thus we have shown that Jf = 0 and by cyclic symmetry,
Jg = Jh = 0. Thus J = 0 and the Jacobi identity has been established. As a corollary we
obtain Poisson’s theorem on conservation of p.b. of conserved quantities.

5.2 Variational principles for Hamilton’s equations

• We seek an extremum principle for Hamilton’s equations, just as we had one for Lagrange’s
equations: S[q] =

∫
L dt and δS = 0. Hamilton’s variational principle for his equations is given

by the functional of a path on phase space (qi(t), pj(t))

S[q, p] =

∫ tf

ti

[
piq̇

i −H(q, p)
]
dt. (185)

Recall that L(q, q̇) = extp(pq̇ − H(q, p)), which motivates the formula for S[q, p] . Note that
S[q] is a functional of a path on configuration space, while S[q, p] is a functional of a path on
phase space. They are not the same, though we denote both by S and call both ‘action’. We
ask that this functional S[q, p] be stationary with respect to small variations in the phase path
(q(t), p(t)) while holding δq(ti) = 0 and δq(tf ) = 0. Note that we do not constrain δp(ti) or
δp(tf ). That would be an over specification13. Now

δS =

∫ tf

ti

[
δpi q̇

i + piδq̇
i − ∂H

∂qi
δqi − ∂H

∂pi
δpi

]
dt+ . . . (186)

We find upon integrating by parts in the second term and using δq(ti,f ) = 0,

S[q + δq, p+ δp] = S[q, p] +

∫ tf

ti

[
q̇iδpi − ṗiδqi −

∂H

∂qi
δqi − ∂H

∂pi
δpi

]
dt+ . . . . (187)

The action must be stationary with respect to arbitrary infinitesimal independent variations δp ,
δq subject to δq(ti) = δq(tf ) = 0. So the coefficients of δp and δq must individually vanish.
Thus we recover Hamilton’s equations at all times ti < t < tf :

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
. (188)

Hamilton’s equations treat position and momentum on an equal footing except for a sign. But
the above boundary conditions treat them asymmetrically. This is a clue that there is another
variational principle for Hamilton’s equations. Consider the functional of a path on phase space

S̃[q, p] =

∫ tf

ti

[
−qj ṗj −H(q, p)

]
dt (189)

13There would in general not be any trajectory joining specified values of q and p at both ti and tf . Demonstrate
this in the case of a free particle.
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which we extremize with respect to small variations δq, δp while holding δpj(ti) = δpj(tf ) = 0.
Then integrating by parts,

δS̃ =

∫ tf

ti

[
−ṗjδqj − qjδṗj −

∂H

∂qj
δqj − ∂H

∂pj
δpj

]
dt =

∫ tf

ti

[(
ṗj +

∂H

∂qj

)
δqj +

(
q̇j − ∂H

∂pj

)
δpj

]
dt

(190)
So δS̃ = 0 also implies Hamilton’s equations. We will exploit both these variational principles
while studying canonical transformations.

5.3 Lagrange’s and Hamilton’s equations take same form in all systems of coordinates on
Q

• One of the advantages of having a variational principle is that it allows us to show that the
equations of motion expressed in terms of the hamiltonian, take the same form in any system
of coordinates on configuration space Q . We first recall why this is the case for Lagrange’s
equations.

• We begin by observing that the condition for a function to be stationary is independent of
choice of coordinates, as long as we make non-singular changes of coordinates14. Consider f(x),
it is extremal when f ′(x) = 0. Now change to a new coordinate X(x) (e.g. X(x) = 2x).
Then f(x) = f(x(X)) ≡ f̃(X). Moreover, by the chain rule, f ′(x) = f̃ ′(X)dXdx . If the change

of variables is non-singular, dX
dx 6= 0. It follows that f ′(x) = 0 ⇔ f̃ ′(X) = 0. For several

variables, a real-valued function f(x) is extremal at a point if ∂f
∂xi

= 0 for all i . Under a

change of coordinates xi 7→ Xi(x), ∂f
∂xi

= ∂f
∂Xj J

j
i where the Jacobian matrix J ji = ∂Xj

∂xi
. Now

the condition for any function f to be extremal is independent of coordinates provided the
Jacobian matrix does not have kernel (i.e. has trivial null space), which is the same as being
non-singular or having non-zero determinant at the relevant point.

• Recall that Lagrange’s equations are the conditions for stationarity of the action S[q] =∫
L(q, q̇) dt . Now suppose we make a non-singular change of coordinates q → Q(q) on Q . We

work with 1 degree of freedom though the same applies to several degrees of freedom. We define
a new Lagrange function by expressing the old coordinates and velocities in terms of the new
ones

S[q] =

∫
L(q, q̇) dt =

∫
L̃(Q, Q̇) dt ≡ S̃[Q] where L(q, q̇) = L̃(Q(q), Q̇(q, q̇)). (191)

As before, the conditions for stationarity under infinitesimal variations are the same: δS[q] = 0
iff δS̃[Q] = 0. Thus, Lagrange’s equations must take the same form in the q and Q coordinates:

d

dt

∂L

∂q̇
=
∂L

∂q
⇔ d

dt

∂L̃

∂Q̇
=
∂L̃

∂Q
. (192)

• We apply the same sort of reasoning to argue that hamilton’s equations take the same form
in all systems of coordinates on Q . Suppose we change from q → Q . Then we get a new

Lagrange function L̃(Q, Q̇). We also get a new conjugate momentum P = ∂L̃
∂Q̇

while p = ∂L
∂q̇ .

14A change of variables qi → Qi is said to be non-singular if it is a smooth and invertible change of variables
(with smooth inverse). The change is non-singular in some neighbourhood of the point ~q0 if the matrix of first

partials (Jacobian matrix) J ij = ∂Qi

∂qj
is a non-singular matrix (i.e. has non-zero determinant) at ~q = ~q0 .
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In general, Q = Q(q) but P will be a function of both q and p . Hamilton’s equations are the
conditions for the action functional S[q, p] =

∫
[pq̇ −H(q, p)] dt to be extremal with respect to

infinitesimal variations in the phase path δS = 0. We also have a new hamiltonian H̃(Q,P ) =
H(q(Q), p(Q,P )) and new action functional

S̃[Q,P ] =

∫
[PQ̇− H̃(Q,P )] dt while S[q, p] =

∫
[pq̇ −H(q, p)] dt. (193)

As before, the conditions δS = 0 imply the conditions δS̃ = 0 so that Hamilton’s equations
take the same form in both systems of coordinates on configuration space.

• Though we changed coordinates on Q , we didn’t change the momenta in an arbitrary way.
Instead, here the change in momenta was induced by the change in coordinates via the formula

P = ∂L̃
∂Q̇

where L̃(Q, Q̇) is the Lagrangian expressed in terms of the new coordinates and

velocities. So far, we used the Lagrangian as a walking stick to define the momenta. But
Hamilton’s equations treat coordinates and momenta on a fairly equal footing. Leaving behind
the walking stick of the Lagrange function, one wonders if Hamilton’s equations take the same
form in a larger class of coordinate systems on phase space as opposed to just configuration space.
Remarkably, Hamilton’s equations do take the same form in a slightly larger class of coordinate
systems on phase space, namely those that are canonically related to q, p . It is possible to
see this using the variational principle, but we first develop an alternative viewpoint involving
Poisson brackets.

5.4 Canonical transformations

• Recall that the space of generalised coordinates and momenta is called phase space. Hamilton’s
equations q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
may be easier to solve (or understand qualitatively) in some

systems of coordinates and momenta compared to others. For instance, there may be more
cyclic coordinates in one system. E.g., for a particle in a central potential V (r) on the plane,
the eom are simpler to handle in polar coordinates r, θ than in Cartesian coordinates x, y . From
the Lagrangian

L(x, y, ẋ, ẏ) =
1

2
m
(
ẋ2 + ẏ2

)
− V

(√
x2 + y2

)
=

1

2
m
(
ṙ2 + r2θ̇2

)
− V (r) = L̃(r, θ, ṙ, θ̇), (194)

θ is a cyclic coordinate and its conjugate momentum Lz = pθ = mr2θ̇ is conserved. On the
other hand, neither px nor py is conserved. One checks that Hamilton’s equations take the same
form in cartesian and polar coordinates (as guaranteed by the preceding section’s argument):

ẋ =
∂H

∂px
, ẏ =

∂H

∂py
, ṗx = −∂H

∂x
, ṗy = −∂H

∂y
where px =

∂L

∂ẋ
and py =

∂L

∂ẏ

⇔ ṙ =
∂H

∂pr
, θ̇ =

∂H

∂pθ
, ṗr = −∂H

∂r
, ṗθ = −∂H

∂θ
where pr =

∂L

∂ṙ
and pθ =

∂L

∂θ̇
. (195)

We say that the transformation from cartesian coordinates and conjugate momenta (x, y, px, py)
to polar coordinates and conjugate momenta (r, θ, pr, pθ) is a canonical transformation. We also
check (problem set 10) that the fundamental Poisson brackets among coordinates and momenta
are preserved

{x, px} = {y, py} = 1, {x, py} = {y, px} = {x, y} = {px, py} = 0
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and {r, pr} = {θ, pθ} = 1, {r, pθ} = {θ, pr} = {r, θ} = {pr, pθ} = 0. (196)

• Suppose we start with a system of coordinates qi and conjugate momenta pi , in which
Hamilton’s equations take the standard form q̇ = ∂H

∂p , ṗ = −∂H
∂q . A canonical transformation

(CT) of coordinates and momenta from old ones (qi, pi) to new ones (Qi, Pi) is one that preserves
the form of Hamilton’s equations. At the very least, if we make a change of variables that is
canonical, we do not need to re-derive the equations of motion, they are guaranteed to take the
Hamiltonian form.

• But not every choice of coordinates and momenta is canonical. For example, we notice that
Hamilton’s equations treat coordinates and momenta on a nearly equal footing. So suppose we
simply exchange coordinates and momenta by defining Q = p and P = q . Then the hamiltonian
may be written in terms of the new variables H(q, p) = H(P,Q) ≡ H̃(Q,P ). We find that

Q̇ = ṗ = −∂H
∂q

= −∂H̃
∂P

and Ṗ = q̇ =
∂H

∂p
=
∂H̃

∂Q
. (197)

So the eom in the new variables do not have the form of Hamilton’s equations, they are off
by a sign. So (q, p) 7→ (p, q) is not a canonical transformation. We may also check that the
transformation does not preserve the fundamental p.b.

{q, p} = 1 while {Q,P} = {p, q} = −1 (198)

• In the last section we saw that any change of coordinates alone (‘point transformation’)

qi → Qi , with the associated ‘induced’ change in momenta Pi = ∂L̃
∂Q̇i

is automatically canonical.

An example of such a canonical transformation is the one from cartesian to polar coordinates for
a particle on a plane. The interesting thing is that there are canonical transformations that are
more general than those resulting from changes of coordinates (point transformations) on Q .
Perhaps the simplest such examples are (1) Q = p, P = −q and (2) Q = −p, P = q which mix
coordinates and momenta for one degree of freedom. Check that Hamilton’s equations retain
their form, as do the fundamental Poisson brackets.

• In the above examples of CTs, along with Hamilton’s equations, the fundamental p.b. among
coordinates and momenta were also preserved. This is true in general as we now argue.

5.4.1 Form of Hamilton’s equations are preserved iff fundamental Poisson brackets are
preserved

• It is worth noting that a transformation is canonical irrespective of what the hamiltonian is.
The form of Hamilton’s equations must be unchanged for any smooth H(q, p). This suggests
it should be possible to state the condition of canonicity without reference to the hamiltonian.
We will show now (for 1 degree of freedom, for simplicity) that a transformation preserves the
form of Hamilton’s equations iff it preserves the fundamental Poisson brackets.

• Proof: Suppose we make a smooth invertible change of coordinates and momenta q 7→
Q = Q(q, p) and p 7→ P = P (q, p). The inverse transformation expresses the old coordinates
and momenta in terms of the new ones q = q(Q,P ) and p = p(Q,P ). The old coordinates
satisfy canonical Poisson brackets {q, p} = 1, {q, q} = {p, p} = 0. Under this change, the
old hamiltonian H(q, p) transforms into a new hamiltonian H̃(Q,P ) = H(q(Q,P ), p(Q,P )).
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Suppose the above transformation preserves the form of Hamilton’s equations. Denoting partial
derivatives by subscripts,

q̇ = Hp and ṗ = −Hq while Q̇ = H̃P and Ṗ = −H̃Q. (199)

Then we’ll show that {Q,P} = 1. The other two p.b. {Q,Q} and {P, P} vanish by anti-
symmetry.

• By hamilton’s equations and the chain rule, Q̇ = H̃P = HqqP +HppP = −ṗqP + q̇pP . We also
know that Q̇ = Qq q̇ + Qpṗ . We want to equate these two expressions and extract information
about the p.b. {Q,P} = QqPp−QpPq . As it is the partial derivatives of Q and P that appear
in this p.b., it is of interest to express qP , pP etc in terms of partial derivatives of Q and P
using the following Lemma.

• Lemma: qP = −Qp{Q,P} , pP = Qq{Q,P} , pQ = − Pq

{Q,P} , and qQ =
Pp

{Q,P} .

• Proof: Recall that for an invertible map of one variable, x→ X(x) = f(x) with inverse x = x(X) =

f−1(X) the derivatives are reciprocally related dX
dx =

(
dx
dX

)−1
. This arises from differentiating the

identity (f ◦f−1)(X) = f(f−1(X)) = X with respect to X . We get f ′(x)x′(X) = 1 or X ′(x)x′(X) = 1.

• What is the analogous formula for the map F : xi = (q, p) 7→ Xi = (Q,P )? Here

F : R2 → R2, F (q, p) = (Q,P ) and F−1 : R2 → R2, F−1(Q,P ) = (q, p). (200)

In other words, F−1( ~X) = ~x or F i(~x) = Xi . As before, F ◦ F−1 is the identity, so

F (F−1( ~X)) = ~X ⇒ F i(~x( ~X)) = Xi, and differentiating,
∂F i

∂xj
∂xj

∂Xk
= δik. (201)

Here the matrices of first partials are

∂F i

∂xj
=

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)
and

∂xj

∂Xk
=

(
∂q
∂Q

∂q
∂P

∂p
∂Q

∂p
∂P

)
. (202)

The above condition says that the matrix product must be the identity(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)(
∂q
∂Q

∂q
∂P

∂p
∂Q

∂p
∂P

)
=

(
1 0
0 1

)
. (203)

We get a system of four equations for the four ‘unknowns’ qQ, qP , pQ, pP

QqqP = −QppP , PqqP + PppP = 1, PqqQ = −PppQ, and QqqQ +QppQ = 1. (204)

These are, in fact, two pairs of linear equations in two unknowns. They are easily solved for the partials
of the old variables (e.g. by matrix inversion). The solution involves the reciprocal of the determinant of
the coefficient matrix, which is just the p.b. {Q,P} = QqPp −QpPq :

qP = − Qp
{Q,P}

, pP =
Qq
{Q,P}

, pQ = − Pq
{Q,P}

, qQ =
Pp
{Q,P}

. (205)

• Armed with this lemma, we return to the fact that the eom retains its form in the new
variables:

Q̇ = H̃P =
[ṗQp + q̇Qq]

{Q,P}
=

Q̇

{Q,P}
. (206)
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For this equation to be satisfied we must have {Q,P} = 1. Similarly,

Ṗ = −H̃Q = −HqqQ −HppQ = ṗ
Pp
{Q,P}

+ q̇
Pq
{Q,P}

=
1

{Q,P}
[Pq q̇ + Ppṗ] =

Ṗ

{Q,P}
. (207)

For this to hold, again we need {Q,P} = 1. Thus we have shown that if Hamilton’s equations
retain their form in the new coordinates, then the transformation also preserves the form of the
fundamental p.b.

• Let us now prove the converse, namely, if the transformation (q, p) 7→ (Q,P ) preserves the
form of the p.b., i.e., if {Q,P} = 1, then it must preserve the form of Hamilton’s equations. So

we must show that ∂H̃
∂P = Q̇ and −∂H̃

∂Q = Ṗ . Let us compute

∂H̃

∂P
=
∂H

∂q
qP +

∂H

∂p
pP = −ṗqP + q̇pP = ṗQp + q̇Qq = Q̇. (208)

In the penultimate equality we used a result from the lemma and the assumption that {Q,P} =
1. So the first of Hamilton’s equations holds in the new variables! Similarly, we show that the
second of Hamilton’s equations also holds in the new variables

∂H̃

∂Q
=
∂H

∂q

∂q

∂Q
+
∂H

∂p

∂p

∂Q
= −ṗqQ + q̇pQ = −ṗPp − q̇Pq = −Ṗ . (209)

So we showed that if the transformation preserves the p.b., then it is canonical (i.e., preserves
the form of Hamilton’s equations). A similar result also holds for several degrees of freedom,
though we do not discuss it here. So the new coordinates and momenta are said to be canonical
provided

Q̇i =
∂H̃

∂Pi
and Ṗi = − ∂H̃

∂Qi
or equivalently {Qi, Pj} = δij and {Qi, Qj} = {Pi, Pj} = 0.

(210)

• Time evolution by any hamiltonian gives us examples of canonical transformations. Recall
that (we will prove this shortly) the equal time Poisson brackets of coordinates and momenta

{qi(t), pj(t)} = δij and {qi(t), qj(t)} = {pi(t), pj(t)} = 0 (211)

are valid at all times. So the map from (qi(t1), pi(t1)) to (qi(t2), pi(t2)) which is a map from
phase space to itself, is canonical for any times t1, t2 . So hamiltonian evolution gives us a
1-parameter family of canonical transformations.

• It may be noted that unequal-time Poisson brackets contain dynamical information and depend
on the hamiltonian. Equal-time Poisson brackets do not depend on the hamiltonian and are in a
sense kinematical. Unequal time p.b. {f(q(0), p(0)), g(q(t), p(t))} may be reduced to equal time
p.b. by solving the equations of motion and expressing g(q(t), p(t)) in terms of initial values
q(0) and p(0).

5.4.2 Brief comparison of classical and quantum mechanical formalisms

• This is a good opportunity to compare certain features of classical and quantum mechanics.
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1. In CM, the space of (pure) states is the phase space. In QM it is the quantum mechanical
Hilbert space (vector space H with inner product 〈·, ·〉).

2. In CM, observables are smooth real-valued functions on phase space. In QM, observables
(A,B etc) are self-adjoint (hermitian) operators on Hilbert space. Self-adjointness is the
analogue of reality, both of which ensure that results of measurements are real numbers.

3. The Poisson bracket of observables in CM is replaced by the commutator of operators
(upto a factor of i~) in QM, e.g. {x, p} = 1 −→ 1

i~ [x, p] = 1. Both operations map a pair
of observables to a new observable.

4. In CM, time evolution is a 1-parameter family of canonical transformations. In QM, time
evolution is a 1-parameter family of unitary transformations U(t) = e−iHt/~ .

5. Unitary transformations ( |ψ〉 → |ψ′〉 = U |ψ〉 and A → A′ = UAU † with U †U = I )
are quantum analogs of canonical transformations. Both preserve the structure of the
formalism. CTs preserve the fundamental p.b. while unitary transformations preserve the
Heisenberg canonical commutation relations, since [A′, B′] = U [A,B]U † and in particular
[q′, p′] = U [q, p]U † = U(i~)U † = i~ . Unitary transformations also preserve inner products
〈Uφ|Uψ〉 = 〈φ|U †Uψ〉 = 〈φ|ψ〉 .

5.4.3 Canonical transformations for one degree of freedom: Area preserving maps

• To better understand the concept, let us focus on canonical transformations for systems with
one degree of freedom. So we have just one coordinate q and one canonically conjugate momen-
tum p which together parametrize phase space and satisfy canonical p.b. relations {q, p} = 1.
Suppose we transform to a new pair of coordinates and momenta Q(q, p) and P (q, p). Then
what does it mean for the transformation to be canonical? It means the new variables satisfy
the same p.b., i.e.,

1 = {Q,P} =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
(212)

The quantity that appears above is in fact the determinant of the Jacobian matrix of 1st partials

det J = det

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)
=
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
. (213)

Both (q, p) and (Q,P ) provide coordinate systems on phase space. We recall from calculus that
the Jacobian determinant is the factor relating oriented area elements on phase space

dQ dP = (det J) dq dp (214)

So a canonical transformation for a system with one degree of freedom is simply a transformation
that preserves the signed area element on phase space. Such a transformation is called area
preserving.

• Pictorially, what is an area preserving map? The map F : R2 → R2 specified by q → Q(q, p)
and p→ P (q, p) maps points on the plane to points on the plane. E.g. it could be the translation
map q → q + 1, p→ p+ 2 or a rotation etc. Under such a transformation, any domain D ⊂ R2
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will be mapped to a new region D′ = F (D). The map is area preserving if for any D with finite
area, Ar(D ) = Ar(D′ ) i.e.,

∫∫
D dqdp =

∫∫
D′ dqdp . The above condition guarantees this, since

Ar(D ) =

∫∫
D
dqdp =

∫
F (D)

dQdP

det J
=

∫∫
F (D)

dQdP =

∫∫
D′
dqdp = Ar(D′ ). (215)

In the first equality we changed variables of integration and in the second we used det J = 1
and relabeled the dummy variables of integration Q→ q and P → p .

• Area preserving maps of the phase plane are all the canonical transformations for one degree of
freedom. These include (but are not restricted to) rigid motions like translations and rotations of
the phase plane. For example, time evolution by a generic hamiltonian is a CT which in general
will morph a nice looking disk on the phase plane into a complicated region having the same
area. For several degrees of freedom, it can be shown that a transformation of coordinates and
momenta is canonical provided it preserves the area elements in every two dimensional tangent
plane through each point in phase space.

5.4.4 CTs preserve Poisson tensor and formula for p.b. of any pair of observables

• We showed that CTs preserve the fundamental p.b. between coordinates and momenta. What
about the p.b. between arbitrary observables f, g? In the old coordinates,

{f, g} ≡ {f, g}q,p =
∑
i

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (216)

It turns out that if (q, p)→ (Q,P ) is canonical (i.e., preserves the fundamental p.b.) then (and
only then), the formula for {f, g} may also be expressed as15

{f, g} =
∑
i

(
∂f

∂Qi
∂g

∂Pi
− ∂f

∂Pi

∂g

∂Qi

)
. (217)

Let us show this for one degree of freedom (though the same calculation also works for n degrees
of freedom by putting in the indices.) Now by definition and the chain rule and rearranging
terms,

{f, g} = fqgp − fpgq = (fQQq + fPPq) (gQQp + gPPp)− (fQQp + fPPp) (gQQq + gPPq)
= fQgP (QqPp −QpPq) + fP gQ (PqQp − PpQq) + fQgQ (QqQp −QpQq) + fP gP (PqPp − PpPq)
= (fQgP − fP gQ) {Q,P}+ fQgQ{Q,Q}+ fP gP {P, P}. (218)

Of course, the last two terms are identically zero by anti-symmetry of p.b., but we displayed
them as they help in writing the corresponding formula for n degrees of freedom:

{f, g} =
(
fQigPj − fPjgQi

)
{Qi, Pj}+ fQigQj{Qi, Qj}+ fPigPj{Pi, Pj}. (219)

Now we see that

{f, g} =
n∑
i=1

(
∂f

∂Qi
∂g

∂Pi
− ∂f

∂Pi

∂g

∂Qi

)
= {f, g}Q,P . (220)

15We are being a bit sloppy with notation here. When we differentiate in Q,P we are regarding f =
f(q(Q,P ), p(Q,P )) .
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iff the new coordinates and momenta satisfy canonical p.b. relations, i.e., if

{Qi, Pj} = δij , and {Qi, Qj} = 0 = {Pi, Pj}. (221)

Thus a transformation is canonical if the p.b. of any pair of observables is given by the same
sort of formula whether computed using the old or new variables:

(q, p) 7→ (Q,P ) is a canonical transformation iff {f, g}q,p = {f, g}Q,P ∀ f, g. (222)

• Yet another way of stating the canonicity of a transformation is that it preserves the Poisson
tensor. Suppose ~ξ = (~q, ~p) is the grand coordinate on phase space in the old variable and
~Ξ = ( ~Q, ~P ) is the new one16. Then the preservation of fundamental p.b means

{ξi, ξj} = rij = {Ξi,Ξj}. (223)

In other words, a CT is one that leaves the Poisson tensor invariant, component-wise, just as an
isometry is one that leaves a metric tensor invariant. By the foregoing,

{f, g} = {f, g}q,p =
∑
ij

∂f

∂ξi
∂g

∂ξj
rij =

∑
ij

∂f

∂Ξi
∂g

∂Ξj
rij = {f, g}Q,P (224)

where the same Poisson tensor rij appears in both expressions, though the differentiation is
with respect to old variables in the first expression and with respect to new variables in the
second expression.

5.4.5 Generating function for infinitesimal canonical transformations

• The condition for a transformation from canonical coordinates and momenta (qi, pi) to new
ones (Qi, Pi) to be canonical is that the Poisson brackets must be preserved. It would be nice
to find an explicit way of producing canonical transformations. Let us address this question for
infinitesimal canonical transformations, those that depart from the identity transformation by
a small amount. It turns out that any such canonical transformation can be expressed in terms
of a single ‘generating’ function on phase space. In other words, we consider transformations of
the form

Qi = qi + δqi(q, p) and Pi = pi + δpi(q, p) where δqi, δpi are small. (225)

Note that we do not expand δq, δp in powers of q and p , we are not assuming that q, p are
small. Now we impose the conditions that the new coordinates and momenta satisfy canonical
p.b. up to terms quadratic in δqi and δpi for 1 ≤ i, j ≤ n .

0 = {Qi, Qj} = {qi + δqi, qj + δqj} ≈ {qi, δqj}+ {δqi, qj} ⇒ ∂δqj

∂pi
− ∂δqi

∂pj
= 0.

0 = {Pi, Pj} ≈ {pi, δpj}+ {δpi, pj} ⇒
∂δpj
∂qi

− ∂δpi
∂qj

= 0.

δij = {Qi, Pj} ≈ {qi, pj}+ {qi, δpj}+ {δqi, pj} ⇒
∂δpj
∂pi

+
∂δqi

∂qj
= 0. (226)

16 Ξ is the capital Greek letter, pronounced Xi .

49



Thus we have re-written the conditions for an infinitesimal transformation to be canonical as a
system of homogeneous linear partial differential equations for the small changes in coordinates
and momenta δqi(q, p) and δpi(q, p). They look formidable, in fact there are apparently more
equations than unknowns for n ≥ 2. Accounting for antisymmetry, {Qi, Qj} = 0 gives one

condition for each n ≥ i > j ≥ 1, which makes n2−n
2 equations, and the same number for

{Pi, Pj} = 0. {Qi, Pj} = δij gives n2 more conditions. So we have n2 − n + n2 = 2n2 − n
equations for 2n unknown functions δqi and δpi . However, the equations are not all independent
and they admit an infinite dimensional family of solutions! The key is to notice that the last
set of equations, even for 1 degree of freedom ∂δp

∂p + ∂δq
∂q = 0 look like the condition for the

divergence of a vector field on the plane ~B = (δq, δp) to vanish. Recall that the divergence-free
condition ∇ ·B on a magnetic field may be solved identically by introducing a vector potential
~B = ∇×A . This suggests we seek solutions in the form δq = ∂f

∂p , δp = −∂f
∂q . On the other hand,

the first two systems of equations look like the conditions for the curl of a vector field on the
plane to vanish. If E = (Ex, Ey) is an electric field on a plane, then ∇×E = (∂xEy − ∂yEx)ẑ .
Recall that if the curl of a vector field on the plane vanishes ∇×E = 0, then we can express the
vector field as the gradient of a scalar function E = −∇φ = (−∂xφ,−∂yφ). All this motivates
us to express δqi and δpj as derivatives of a scalar function f . Check that the above equations
are identically satisfied if we put

δqi =
∂f

∂pi
= {qi, f} and δpi = − ∂f

∂qi
= {pi, f} (227)

for an arbitrary twice differentiable function f(q, p) on phase space. We say that f is an infinites-
imal generator for the above infinitesimal CT. The small quantity f generates the infinitesimal
CT via the Poisson bracket, it is determined up to an additive constant. This ambiguity is the
analogue of the invariance of electric and magnetic fields under gauge transformations. In the
case of R2n phase space, all infinitesimal CTs may be obtained through appropriate choices
of generators f(q, p). It is also possible to build up finite CTs by composing a succession of
infinitesimal ones (see problem set 12). We will say more about finite CTs later.

• We may of course compose CTs (q, p) → (Q,P ) → (Q̃, P̃ ) to make new CTs and also
invert a CT. Check that −f generates the inverse of the infinitesimal CT generated by f .
f = 0 generates the identity CT. Arbitrary smooth generating functions f(q, p) parametrize
the neighborhood of the group identity, i.e. the Lie algebra. Since we need infinitely many
real parameters to specify a function f(q, p) (such as all its Taylor coefficients), the Lie algebra
and group of CTs is infinite dimensional. To first approximation, check that f + g generates
the CT consisting of the composition of the infinitesimal CTs generated by f and g , in either
order. But this approximation is a bit crude, the order does matter since the group of CTs is
non-abelian. The non-abelian nature is encoded in the Lie bracket, which is just the p.b. of
infinitesimal generators {f, g} (see problem set 11).

• We already noted that hamiltonian time evolution over any time interval is a CT since it pre-
serves the p.b. among the q ’s and p ’s. The above result allows us to interpret infinitesimal time
evolution as an infinitesimal CT and identify the corresponding generating function. Hamilton’s
equations for evolution over a small time δt give, to leading order in δt ,

Qi ≡ qi(t+ δt) = qi(t) + δt
∂H

∂pi
and Pi ≡ pi(t+ δt)− δt∂H

∂qi
. (228)
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In this case the small change in coordinates and momenta are

δqi =
∂(H δt)

∂pi
= {qi, H δt} and δpi = −∂(H δt)

∂qi
= {pi, H δt}. (229)

From these equations we read off the infinitesimal generator of time evolution over a small time
δt as f = H(q, p) δt . Notice that f is indeed a small quantity. We say that the hamiltonian
generates the infinitesimal CT corresponding to infinitesimal time evolution via the Poisson
bracket.

• Just like the hamiltonian, every observable f(q, p) generates an infinitesimal CT. E.g. what
infinitesimal CT does the angular momentum component εLz generate? One finds

δx = −εy, δy = εx, δz = 0 and δpx = −εpy, δpy = εpx, δpz = 0. (230)

This CT is a counter clockwise rotation in the x− y plane and px− py plane by the small angle
ε . Contrast it with the infinitesimal CT generated by f = x2 + p2

x .

• It is also interesting to have an expression for the infinitesimal change in a given observable
g(q, p) due to a canonical transformation generated by f(q, p):

δg =
∂g

∂qi
δqi +

∂g

∂pi
δpi =

∂g

∂qi
∂f

∂pi
− ∂g

∂pi

∂f

∂qi
= {g, f}. (231)

So the change in any observable is given by its p.b. with the infinitesimal generator.

5.4.6 Symmetries & Noether’s theorem in the hamiltonian framework

• In the hamiltonian formalism, it is natural to define a symmetry transformation as a canonical
transformation (qi, pi) → (Qi, Pi) that leaves the hamiltonian invariant. The former condition
ensures that a symmetry preserves the p.b. This requirement allows us to obtain a conserved
quantity from an infinitesimal symmetry. This is expected from Noether’s theorem, which we
proved in the Lagrangian framework. Symmetries of the hamiltonian that aren’t CTs, generally
do not lead to conserved quantities.

• E.g., if the hamiltonian is independent of a coordinate q , then it is invariant under translations
of q , H(q, p) = H(q + a, p). These are implemented by the CT q → q + a, p → p . q is then a
cyclic coordinate and the conjugate momentum is conserved ṗ = −∂H

∂q = 0. More generally a
transformation is said to leave the hamiltonian invariant if H(q, p) = H(Q(q, p), P (q, p)). It is
important to distinguish between an invariant function and just a scalar function. A scalar func-
tion on a manifold is one whose value at a physical location does not depend on the coordinate
address we give for the location. A scalar function satisfies φ(q, p) = φ(q(Q,P ), p(Q,P )) for all
q(Q,P ), p(Q,P ). I.e, its value at a point whose coordinates in the old system are (q, p) does not
change if we express q, p in terms of some other arbitrarily chosen coordinates. The hamiltonian
of any system is a scalar function on phase space. An invariant function is a scalar function
with the additional property that its value does not change if we change the physical location at
which it is evaluated by a symmetry transformation, i.e., H(q, p) = H(Q(q, p), P (q, p)) where
(q, p)→ (Q,P ) is not an arbitrary transformation, but a symmetry transformation.

• Symmetries may be discrete or continuous. Continuous symmetries are those that may be
continuously deformed to the identity. Regarded as CTs, they can be built by composing a
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succession of infinitesimal CTs. Consider an infinitesimal symmetry, there must be a function on
phase space f(q, p) that generates the corresponding CT, called the generator of the symmetry.
E.g. f(q, p) = pia

i for a fixed vector ~a generates a translation of coordinates by ~a , since

δqi =
∂f

∂pi
= ai and δpi = − ∂f

∂qi
= 0. (232)

Now the change in any observable g due to the symmetry transformation generated by f is
δg = {g, f} . In particular, since the hamiltonian is invariant under a symmetry, we must
have 0 = δH = {H, f} = 0. By hamilton’s equation this means ḟ = {f,H} = 0. It follows
that the generator f of the symmetry is a constant of motion. Thus we have a Hamiltonian
version of Noether’s theorem. The symmetry generator is the conserved quantity. In the above
example, it means p ·a is a conserved quantity if the hamiltonian is invariant under translations
of coordinates by ~a .

5.4.7 Liouville’s theorem

• We will apply the idea of infinitesimal generator for a CT to establish an interesting theorem
of Liouville on the geometric nature of CT. Previously, we saw that for one degree of freedom,
CTs preserve areas in phase space. This is a special case of Liouville’s theorem. For n degrees
of freedom, it says that CTs preserve 2n-dimensional ‘volumes’ in phase space. In other words,
suppose a 2n-dimensional region in phase space D ⊂ R2n is mapped by a CT to a new region
D′ ⊂ R2n . Then Vol(D) = Vol(D′). Alternatively, it says that the volume element in phase
space is invariant under a CT

n∏
i=1

dQi
n∏
j=1

dPj =
n∏
i=1

dqi
n∏
j=1

dpj . (233)

For a general transformation, the determinant of the Jacobian matrix of first partials appears
as a pre-factor on the rhs

J =

(
∂Qi

∂qj
∂Qi

∂pj
∂Pi
∂qj

∂Pi
∂pj

)
2n×2n

, where each sub-matix is an n× n block with 1 ≤ i, j ≤ n. (234)

So Liouville’s theorem says that det J = 1 for a canonical transformation. Note that unlike for
one degree of freedom, for n > 1, det J = 1 is not a sufficient condition for a transformation to
be canonical.

• Let us establish Liouville’s theorem for infinitesimal canonical transformations by using our
expressions for Qi, Pj in terms of an infinitesimal generator17 εf

Qi ≈ qi + ε
∂f

∂pi
and Pi ≈ pi − ε

∂f

∂qi
(235)

Let us first look at the simple case of n = 2 degrees of freedom, where

Q1 ≈ q1 + εfp1 , Q2 ≈ q2 + εfp2 , P1 ≈ p1 − εfq1 and P2 ≈ p2 − εfq2 (236)

17 ε is a small parameter which will help us keep track of infinitesimals, we will ignore quantities of order ε2 .
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and sub-scripts denote partial derivatives. In this case the Jacobian matrix

J ≈ I + ε


fq1p1

fq2p1
fp1p1 fp1p2

fq1p2
fq2p2

fp1p2 fp2p2

−fq1q1 −fq2q1 −fp1q1 −fp2q1

−fq1q2 −fq2q2 −fp1q2 −fp2q2

 = I + εF (237)

departs from the identity by an infinitesimal matrix of second partials of f . Now18

det J = det[I + εF ] = 1 + ε tr F +O(ε2) = 1 +O(ε2) (238)

since F is traceless. So for two degrees of freedom we have shown that an infinitesimal canonical
transformation preserves the (4-dimensional) volume element in phase space.

• The case of n-degrees of freedom is analogous. The 2n×2n Jacobian matrix is made of n×n
blocks

J =

(
δij + ε ∂2f

∂pi∂qj
ε ∂2f
∂pi∂pj

−ε ∂2f
∂qi∂qj

δij − ε ∂2f
∂qi∂pj

)
⇒ det J ≈ 1 + ε

n∑
i=1

∂2f

∂pi∂qi
− ε

n∑
i=1

∂2f

∂qi∂pi
= 1 (239)

Thus, an infinitesimal canonical transformation preserves the volume element in phase space.
Synthesizing a finite canonical transformation by composing a succession of N infinitesimal ones
and letting N →∞ and ε→ 0, we argue that finite canonical transformations also preserve the
phase volume. One needs to show that the terms of order ε2 and higher, will not contribute to
the Jacobian of a finite CT.

• In particular, hamiltonian time evolution preserves phase volume. This is true even if the
hamiltonian is explicitly time dependent. All we need is for the equations of motion to be
expressible in Hamiltonian form q̇i = ∂H

∂pi
, ṗi = ∂H

∂qi
and this is true even if the Lagrangian

depends explicitly on time (see the section on Hamilton’s equations). At each instant of time,
H generates an infinitesimal CT that preserves the phase volume. Of course, if H is explicitly
time-dependent, the CT will change with time, but phase volume will still be preserved. Note
that dissipative systems do not admit a standard Lagrangian or hamiltonian description, there
is no function H(q, p, t) for which hamilton’s equations reproduce the equations of motion.
Typically, for dissipative systems, the volume in phase space is a decreasing function of time
(e.g. for the damped harmonic oscillator mẍ = −kx−γẋ , irrespective of what initial conditions
one considers, the mass comes to rest at the equilibrium point (x = 0,mẋ = 0), so the phase
space area shrinks to zero).

• Application to statistical mechanics: Consider the gas molecules in a room, modeled as
a system of N classical point particles. The phase space is 6N dimensional with coordinates
~q1 · · · ~qN , ~p1 · · · ~pN . Now owing to the difficulty of determining the initial values of these variables,
we may at best be able to say that the initial conditions lie within a certain region D of phase
space. Each of the phase points in D will evolve in time and trace out a phase trajectory. In
this manner D itself will evolve in time to a new region D′ which contains the possible phase

18Suppose the eigenvalues of J = I+ εF are λ1, · · · , λ2n . Then from the characteristic equation det(J −λI) =
det(εF − (λ − 1)I) = 0 we see that the eigenvalues of εF are λ1 − 1, · · ·λ2n − 1. Hence the eigenvalues of F
are f1 = λ1−1

ε
, · · · λ2n−1

ε
. Thus det J = λ1 · · ·λ2n = (1 + εf1) · · · (1 + εf2n) = 1 + ε(f1 + · · · + f2n) + O(ε2) =

1 + ε tr F + O(ε2) . Alternatively, assuming the identity det J = exp( tr log(I + εF )) , one may proceed by
expanding in powers of ε .
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points at a later time. We are often not interested in locations and momenta of individual gas
molecules but average properties of the gas (such as pressure or internal energy). These may
be obtained by computing an average over the region of phase space D′ . Liouvilles’s theorem
says that this region of phase space evolves in time as an ‘incompressible fluid’. In general, the
shape of the region will get distorted with time, while maintaining a constant 6N -dimensional
volume.

5.4.8 Generating functions for finite canonical transformations from variational principles

• Transformations between different sets of canonical coordinates and momenta are called canon-
ical transformations. Here we seek to express finite canonical transformations in terms of gener-
ating functions. We have already done this for infinitesimal canonical transformations. To do so,
we will use Hamilton’s variational principle for his equations. Consider the (possibly explicitly
time-dependent) map from (qi, pj) 7→ (Qi, Pj) with the equations of transformation given by
the functions

Qi = Qi(q, p, t) and Pi = Pi(q, p, t) (240)

Such a change is canonical provided there is a new Hamiltonian K(Q,P, t) (previously called
H̃ ) such that the eom in the new variables take the same form as those in the old variables, i.e.,

Q̇i =
∂K

∂Pi
and Ṗi = − ∂K

∂Qi
while q̇i =

∂H

∂pi
and ṗi = −∂H

∂qi
. (241)

When the transformation is not explicitly dependent on time, K(Q,P ) is got by expressing q, p
in terms of Q,P in the old Hamiltonian H(q, p). We will see that essentially the same thing
continues to be true, but with a slight modification. Now both these sets of Hamilton equations
should be equivalent in the sense that if we express Q and P in terms of q and p in the second
set, they should reduce to the old Hamilton equations.

• Each set of Hamilton’s equations follows from a variational principle:

δ

∫ tf

ti

[
piq̇

i −H(q, p)
]
dt = 0 and δ

∫ tf

ti

[
PiQ̇

i −K(Q,P )
]
dt = 0. (242)

The extrema of these two functionals are the same equations (just in different coordinates). One
way for this to happen is for the integrands to be the same. But there is also a more general
way for this to happen, the integrands could differ by the total time derivative of a function
F1(q,Q, t). Let us see why. Subtracting, we find that the condition for the functional

I[q, p,Q, P ] =

∫ tf

ti

(
pq̇ −H − PQ̇+K

)
dt (243)

to be extremal is identically satisfied, since it is the difference between two equivalent sets of
equations. So this integral must be a constant functional with respect to variations of q, p,Q, P
subject to the boundary conditions δq(ti) = δq(tf ) = δQ(ti) = δQ(tf ) = 0. A way for this to
happen is for the integrand to be a total time derivative of a function Ḟ1(q,Q, t). For, then

I =

∫ tf

ti

Ḟ1 dt = F1(q(tf ), Q(tf ), tf )− F1(q(ti), Q(ti), ti). (244)
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And I is then a constant since q and Q are held fixed at the fixed times ti and tf . Note that
F1 cannot be taken as a function of p or P since δp(ti), δp(tf ), δP (ti), δP (tf ) are unconstrained
in Hamilton’s variational principle and the total derivative of such a term would violate the
constancy of I . In other words, a way by which the equations in both old and new variables
take the hamiltonian form is for the relation

piq̇
i −H = PiQ̇

i −K +
dF1

dt
, (245)

to hold for some function F1(q,Q, t). Multiplying through by dt we get

pdq −Hdt = PdQ−Kdt+
dF1

dt
dt. (246)

That the independent variables in F1 are q,Q, t is also consistent with the fact that the inde-
pendent differentials appearing in the rest of the terms above are dt, dq, dQ . So as an equation
among the independent differentials dq, dQ, dt we have

pdq −Hdt = PdQ−Kdt+
∂F1

∂q
dq +

∂F1

∂Q
dQ+

∂F1

∂t
dt. (247)

Comparing coefficients, we read off the relations

p =
∂F1

∂q
, P = −∂F1

∂Q
and K(Q,P, t) = H(q, p) +

∂F1(q,Q, t)

∂t
. (248)

F1(q,Q) is called the generator of the CT. The first two equations determine the equations of
transformation. The first may be solved to find Q = Q(q, p, t) and using it, the second may
be solved to express P = P (q, p, t). The last relation fixes the new hamiltonian in terms of
the old one and the generator. If F1 does not depend explicitly on time, then it just says
that K(Q,P ) = H(q(Q,P ), p(Q,P )) = H̃(Q,P ) as before. But in general, the new and old
hamiltonians differ by the partial time derivative of the generator.

• Not every function F1(q,Q, t) is a legitimate generator. E.g., F1(q,Q) = q +Q would imply
p = 1 and P = −1 which in general cannot be solved to express Q,P in terms of q, p . Similarly,
F1 = q2 + Q2 also does not generate a CT since it implies p = 2q, P = −2Q which cannot be
solved to express Q,P as functions of q, p . On the other hand, a choice that does generate a
CT is F1(q,Q) = qQ , in which case, Q = p and P = −q exchanges coordinates and momenta
up to a sign. What CT does F1 = −qQ generate?

• In general, for F1(q,Q) to generate a CT, we need the ‘hessian’ of unlike second partials ∂2F1
∂q∂Q

to be non-vanishing19. This will allow us to use p = ∂F1(q,Q)
∂q to solve for Q in terms of q, p ,

at least locally. When the second partial is non-vanishing ∂F1(q,Q)
∂q depends non-trivially on Q

which can then be solved for and then inserted in P = −∂F1(q,Q)
∂Q to express P = P (q, p).

• The generator of a finite CT F1(q,Q, t) is distinct from the infinitesimal generator f(q, p)
encountered before. Unlike f(q, p), which generates all infinitesimal CTs, F1(q,Q, t) does not
generate all finite CTs. In particular, the identity transformation Q = q, P = p is not expressible
via a generating function F1(q,Q, t). The latter expresses p = ∂F1(q,Q)

∂q = p(q,Q) and P =

19More generally an adequate condition should be that the hessian ∂2F1
∂qi∂Qj of ‘unlike’ second partials be invert-

ible.
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−∂F1(q,Q)
∂Q = p(q,Q). But for the identity transformation, it is not possible to express P as a

function of Q and q . Roughly, F1 is good at generating CTs that are in the vicinity of the one
that exchanges coordinates and momenta upto a sign Q = p , P = −q . It is not a good way of
generating CTs in the vicinity of the identity transformation.

• To find a generator for other canonical transformations, we make use of the second variational
principle S̃[Q,P ] for Hamilton’s equations. Here the momenta are held fixed at the end points
δP (ti) = δP (tf ) = 0. For the old hamilton equations, we use the first variational principle
S[q, p] where δq(ti) = δq(tf ) = 0:

δ

∫ tf

ti

[pq̇ −H(q, p)] dt = 0 and δ

∫ tf

ti

[−QṖ −K(Q,P )] dt = 0. (249)

These two variational principles give the same equations even if the integrands differ by the
total time derivative of a function F2(q, P, t) since δq, δP are held fixed at the end points. So
we must have

pdq −Hdt = −QdP −Kdt+
∂F2

∂q
dq +

∂F2

∂P
dP +

∂F2

∂t
dt (250)

Thus F2(q, P ) generates a CT, with the equations of transformation given by

p =
∂F2

∂q
, Q =

∂F2

∂P
and K = H +

∂F2

∂t
. (251)

• It is easily seen that if F2(q, P ) = qP , then the resulting transformation is the identity
Q = q, p = P . In the absence of explicit time dependence, F2(q, P ) is sometimes denoted
W (q, P ). The above arguments show that F2 generates a CT and must therefore preserve
Poisson brackets.

• The difference between the generating functions F1(q,Q) and F2(q, P ) lies in the indepen-
dent variables they depend on. As we have seen, F1(q,Q) cannot be used to get the identity
transformation and one checks that F2(q, P ) cannot be used to get the exchange transformation
Q = p, P = −q . But there are many CTs that may be generated by both a generating func-
tion F1(q,Q) and one of type F2(q, P ) (we will give non-trivial examples in the context of the
harmonic oscillator). In these cases, one wonders whether F1 and F2 are related by a Legendre
transform, as they produce the same CT. From the difference of the above two relations among
differentials,

pdq −Hdt = PdQ−Kdt+ dF1 and pdq −Hdt = −QdP −Kdt+ dF2 (252)

we get

−QdP + dF2 = PdQ+ dF1 ⇒ dF2(q, P ) = d [F1(q,Q) +QP ] where P = −∂F1

∂Q
. (253)

In other words, up to an additive constant, F2 = QP + F1 with P given as above, or in short,

F2(q, P, t) = extQ [QP + F1(q,Q, t)] . (254)

• We may obtain two more types of generators F3(p,Q, t) and F4(p, P, t) for finite canoni-
cal transformations by suitable choices of variational principles for the old and new Hamilton
equations.

S̃[q, p] & S[Q,P ] =⇒ F3(p,Q) while S̃[q, p] & S̃[Q,P ] =⇒ F4(p, P ) (255)
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One finds

−qdp−Hdt = PdQ−Kdt+ dF3(p,Q, t) ⇒ q = −∂F3

∂p
, P = −∂F3

∂Q
and K = H +

∂F3

∂t
(256)

and

−qdp−Hdt = −QdP −Kdt+ dF4 ⇒ q = −∂F4

∂p
, Q =

∂F4

∂P
and K = H +

∂F3

∂t
. (257)

As with F2(q, P ) we may obtain F3(p,Q) and F4(p, P ) via Legendre transforms from the others.
E.g.,

F3(p,Q) = extq[F1(q,Q)−qp] & F4(p, P ) = extQ[QP+F3(p,Q)] = extq[F2(q, P )−pq]. (258)

• One wonders if there are generating functions F5(q, p) and F6(Q,P ) for finite CTs.
The above variational approach doesn’t lead to such generators. In Hamilton’s action principle,
both q and p cannot be held fixed at the end points, so the total time derivative of F5 would
non-trivially modify hamilton’s equations and not lead to a CT in general. Similarly, a generator
F6(Q,P ) is also disallowed in general.

• Example: We began our study of canonical transformations with coordinate changes Qi(q)
on configuration space (‘point’ transformations). The identity is included among such transfor-
mations. So let us look for a generator of type W (q, P ) that effects a change of coordinates on
Q , for simplicity when n = 1. We must have Q = ∂W

∂P and p = ∂W
∂q . The first equation then

implies
W (q, P ) = PQ(q) + g(q) (259)

for some function g(q) of the old coordinates alone. Then p = PQ′(q) + g′(q) or P = (p −
g′(q))/Q′(q). This determines the new momentum. A CT that effects a change of coordinates
on Q is clearly not unique, g(q) being an arbitrary function. Different functions g(q) produce
different possible new momenta. In our earlier discussion, the new momenta were determined
using a Lagrangian. Specification of a Lagrangian (L(q, q̇) with a particular dependence on

velocities), which ‘induces’ a change in momenta P = ∂L̃
∂Q̇

where L̃(Q, Q̇) = L(q(Q), q̇(Q, Q̇)),

is like selecting a specific function g . Of course, the simplest possibility is to take g = 0, which
we will see below corresponds to a Lagrangian with the standard kinetic terms.

• Let us illustrate with the example of the ‘point’ transformation from cartesian to plane polar
coordinates on configuration space. The old coordinates and momenta are x, y, px, py and the

new coordinates and momenta are r =
√
x2 + y2, θ = arctan(y/x), pr, pθ with pr, pθ yet to be

determined. By the above arguments, the simplest generating function of the second type, that
should take cartesian to plane polar coordinates is one with g = 0:

W (x, y, pr, pθ) = Qi(q)Pi = r(x, y)pr + θ(x, y)pθ =
√
x2 + y2 pr + arctan

(y
x

)
pθ (260)

The new coordinates are given by partial derivatives of W and satisfy the defining relations as
expected:

r =
∂W

∂pr
=
√
x2 + y2 and θ =

∂W

∂pθ
= arctan

(y
x

)
. (261)

The old momenta are given by the following partial derivatives of W

px =
∂W

∂x
=
x

r
pr −

y

r2
pθ and py =

∂W

∂y
=
y

r
pr +

x

r2
pθ. (262)
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We may invert these relations and express pr and pθ in terms of the old coordinates and
momenta

pr =
x

r
px +

y

r
py = px cos θ + py sin θ = p · r̂ and pθ = xpy − ypx = Lz. (263)

We see that pr and pθ are the familiar radial and angular momenta. So our generating function
reproduces the usual conjugate momenta that we derived using the standard Lagrangian L =
1
2m(ṙ2 + r2θ̇2)− V (r, θ). On the other hand, if we took

W (x, y, pr, pθ) = rpr + θpθ + g(x, y) for g 6= 0, (264)

then the resulting transformation would still be a CT, but the momenta px = x
r pr−

y
r2 pθ+

∂g
∂x and

py = ∂W
∂y = y

rpr + x
r2 pθ + ∂g

∂y , would not be the usual ones (arising from the above Lagrangian).

• Another simple example of a CT is got by choosing W (q, P ) = λqiPi . The resulting CT is a
scaling,

Qj =
∂W

∂Pj
= λqj and pi =

∂W

∂qi
= λPi ⇒ Pi = λ−1pi. (265)

The p.b. are preserved, {Qi, Pj} = {λqi, λ−1pj} = δij etc. If λ = 1 + ε we get an infinitesimal
scaling. We could also do a different rescaling in each of the q−p planes, by choosing W (q, P ) =∑

i λiq
iPi .

• Choosing λ = −1, we see that reversing the signs of all coordinates and momenta Qi =
−qi, Pj = −pj is a canonical transformation.

5.5 Action-Angle variables and Hamilton-Jacobi equation

• In our discussion of CTs so far, the specific hamiltonian of the system played no role. A
transformation is canonical irrespective of what the hamiltonian may be. Among canonical
systems of coordinates and momenta on phase space, those which admit more cyclic coordinates
for a given hamiltonian, are more suited to solving Hamilton’s equations for the given system.
The momenta conjugate to cyclic coordinates are constants of motion, determined by the initial
conditions. The best possibility is if all the coordinates qi = θi are cyclic. Then the hamiltonian
is a function of the conjugate momenta alone H = H(I1, · · · In) which are constants of motion
İi = −∂H

∂θi
= 0. Furthermore, the coordinates are then linear functions of time since we may

easily integrate Hamilton’s equations.

θ̇i =
∂H(I1, . . . , In)

∂Ii
= ωi(I1, . . . , In) which implies θi(t) = θi(0) + ωit and Ii(t) = Ii(0)

(266)
since the ‘frequencies’ ωi are constant in time. We call such a canonical system angle-action
variables. The coordinates θi are called angle variables and their conjugate constant momenta
Ii are action variables. This terminology will be explained using the harmonic oscillator.

• E.g., the position and momentum of a free particle H = p2

2m are angle and action variables since

{q, p} = 1, momentum is conserved p(t) = p(0) and position is linear in time q(t) = q(0)+ p(0)t
m .

• Not every hamiltonian system with n degrees of freedom admits action-angle variables. A
pre-requisite is that the system possess n independent conserved quantities that are in involu-
tion (Poisson commute pairwise) so that they can serve as action variables. When they exist,
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angle-action variables for a given hamiltonian are not uniquely determined. E.g., we may add
a constant to the action or angle variables without affecting their Poisson brackets nor the con-
servation of the action variables. We may also rescale the action variable Ii by constant λi and
the angle variable θi by 1/λi while retaining their status as action-angle variables.

5.5.1 Action-angle variables for the harmonic oscillator

• The harmonic oscillator hamiltonian is H = p2

2m + 1
2kq

2 with ω =
√

k
m . Hamilton’s equations

q̇ = p/m and ṗ = −kq imply Newton’s equation q̈ = −ω2q , whose solution is

q(t) = A sin(ω(t− t0)) and p(t) = Amω cos(ω(t− t0)) ≡ B cos(ω(t− t0)). (267)

A > 0 implies clockwise motion in the q -p phase plane along an ellipse with semi-axes A =√
2E
mω2 and B =

√
2mE in the q and p directions. The phase point begins at the the northern-

most point of the ellipse at t = t0 . The constant A is fixed in terms of the energy E = 1
2mω

2A2 .
So

q(t) =

√
2E

mω2
sin θ(t) and p(t) =

√
2mE cos θ(t) where θ(t) = ω(t− t0). (268)

Our aim is to identify canonically conjugate angle and action variables for this system. θ(t)
varies linearly with time, so it is a natural candidate for an angle variable. It is of course the
angle subtended by the phase point with respect to the p axis measured clockwise. This explains
the name angle. Taking a quotient we express the angle variable in terms of q and p :

θ = arctan

(
mωq

p

)
. (269)

• An action variable must be a constant of motion. Since there is only one degree of freedom,
there can be at most one independent constant of motion, which can be taken as energy E . All
other constants of motion must be functions of energy. So we suppose that I = I(E). We try
to fix I(E) by requiring that it be canonically conjugate to θ . Since I depends on q, p only via
E , we have

1 = {θ, I} =
∂θ

∂q

∂I

∂p
− ∂θ

∂p

∂I

∂q
=
∂θ

∂q
I ′(E)

∂E

∂p
− ∂θ

∂p
I ′(E)

∂E

∂q
= I ′(E)

[
p

m

∂θ

∂q
− kq∂θ

∂p

]
. (270)

Taking the differential of the formula tan θ = mωq
p for θ we get (using cos2 θ = p2/2Em)

dθ =
√
km

(
dq

p
− q dp

p2

)
cos2 θ =

ω

2E
(p dq − q dp)⇒ ∂θ

∂q
=
ωp

2E
and

∂θ

∂p
= − ωq

2E
. (271)

Thus the condition that angle and action be canonically conjugate becomes an ODE for I(E)

1 = I ′(E)
ω

E

(
p2

2m
+

1

2
mω2q2

)
⇒ I ′(E) =

1

ω
⇒ I(E) =

E

ω
+ c (272)

I is not uniquely determined, as mentioned earlier. For simplicity we pick c = 0 and arrive at
a pair of angle-action variables for the harmonic oscillator

θ(q, p) = arctan

(
mωq

p

)
and I(q, p) =

E(q, p)

ω
=

p2

2mω
+

1

2
mωq2 (273)
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By construction we know that θ(t) = ω(t− t0) is linear in time, I is constant in time and they
are canonically conjugate {θ, I} = 1. Moreover, the hamiltonian when expressed in action-angle
variables H(θ, I) = ωI is a function of I alone, the angle variable is a cyclic coordinate. The
action variable I has dimensions of action, energy × time. As mentioned before, θ is the
angle that the phase point makes with respect to the p axis clockwise. On the other hand, we
notice that the action variable I(E) is 1/2π times the area enclosed by the ellipse traced out

by the phase point during one complete oscillation: the ellipse has semi-axes A =
√

2E
k and

B =
√

2mE and area πAB :

I(E) =
1

2π
Area(E). (274)

We could have anticipated this relation between I(E) and the area for the harmonic oscillator.
It follows from the fact that a CT on the phase plane preserves areas. The area enclosed by
a closed phase trajectory of energy E may be found in two sets of canonical coordinates and
equated. On the one hand,

Area(E) =

∮
p dq (275)

where we could choose a clockwise orientation since the phase trajectory went clockwise with
A > 0. On the other hand, by preservation of areas, we must have∮

p dq =

∮
I dθ =

∫ 2π

0
I(E)dθ = 2πI(E) (276)

by constancy of I along the trajectory. Again we choose θ to increase clockwise. Thus I(E) =
Area(E)/2π as we obtained by explicit calculation.

• Suppose E is an energy for which the trajectory is periodic with period T (E). This is of
course always true for the SHO with E ≥ 0. The action variable is related to the time period
in a simple way: I ′(E) = T (E)/2π . This is seen by differentiating in E

I ′(E) =
1

2π

∮
p′(E)dq =

1

2π

∮
2m dq

2
√

2m(E − V )
=

1

2π

√
m

2

∮
dx√

E − V (x)
=

1

2π
T (E). (277)

We know the time period of SHO trajectories, T (E) = 2π/ω . So we could have used this to
identify the angle variable. What ever θ may be, it must satisfy Hamilton’s equation in the new
variables,

θ̇ =
∂E

∂I
=
dE

dI
=

1

I ′(E)
=

2π

T (E)
=

2π

2π/ω
= ω so θ(t) = ωt+ θ(0). (278)

• The formula E = Iω for the harmonic oscillator is a classical precursor to the quantum me-
chanical formula E = ~(n + 1

2)ω where h = 2π~ is Planck’s unit of action. Indeed, Ehrenfest
proposed that it is the action variables of certain classical systems that may take discrete values
in the quantum theory. A quantity that takes discrete values in the quantum theory (such as
the number of nodes of a bound state wave function), cannot change under small slow pertur-
bations or continuous time-evolution. He asserted that classical quantities that were ‘ripe’ for
quantization should not only be conserved under hamiltonian time-evolution, but also be un-
changed under some slow perturbations of the system. It was found that the action variable (like
the above phase integral

∮
pdq ) is an adiabatic invariant of the classical system. If the spring
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constant is increased slowly, the energy of oscillations increases, but the action E/ω remains
unchanged. These ideas are implemented in the Bohr-Sommerfeld quantization rule

∮
pdq = nh

for the possible values of a phase space action integral in the quantum theory.

• We have found a canonical transformation to action-angle variables for the harmonic oscillator
problem. What is the generator of the finite canonical transformation from q, p to θ, I ? The
Hamilton-Jacobi equation gives us a method to find it.

5.5.2 Generator of canonical transformation to action-angle variables: Hamilton-Jacobi
equation

• Consider a dynamical system20 with hamiltonian H(q, p) and canonical variables {q, p} = 1.

An example to keep in mind is H(q, p) = p2

2m+V (q) and more specifically the harmonic oscillator.
We are interested in trajectories with energy E . So q, p must satisfy the condition H(q, p) = E .
Now we seek the generator of a canonical transformation to new co-ordinates and momenta
Q = θ, P = I where all coordinates are cyclic. In other words, the hamiltonian depends only
on the new momenta P , H(q, p) = K(P ). The new canonical variables would be action-angle
variables: as Q̇ = ∂K

∂P are constant, the Q ’s evolve linearly in time. Moreover, Ṗ = −∂K
∂Q = 0,

so the new momenta are constants of motion21. So we use I, θ in place of P,Q . Let us look
for a generating function of the second type22, depending on old coordinates and new momenta
F2(q, I, t). In terms of F2 ,

θ =
∂F2

∂I
and p =

∂F2

∂q
and K = H +

∂F2

∂t
(279)

Furthermore, let us consider only the case where F2 is not explicitly dependent on time. This
should be adequate for the harmonic oscillator since in that case we found K = H simply by
substitution and I, θ depended on time only via their dependence on q, p , and not explicitly.
In this case, it is conventional to denote F2(q, I) = W (q, I). The equations of transformation
simplify,

θ =
∂W (q, I)

∂I
, p =

∂W (q, I)

∂q
and K(I(q, p)) = H(q, p). (280)

We hope that the trajectories of energy E are simpler to describe in terms of I, θ . Whatever
this generating function may be, it must satisfy the energy constraint H(q, p) = E which is in

general a non-linear first order PDE for W
(
~q, ~I
)

. For the above example with one degree of

freedom, it is

H

(
q,
∂W

∂q

)
= E or

1

2m

(
∂W

∂q

)2

+ V (q) = E. (281)

This equation is called the time-independent Hamilton-Jacobi (HJ) equation and W is called
Hamilton’s characteristic function.

20Our notation will be for one degree of freedom, though some of this generalises to n > 1 degrees of freedom.
For a system with one degree of freedom with conserved hamiltonian, one may usually pass to action-angle
variables. But this is not always possible for systems with n > 1 degrees of freedom.

21Of course, there may not be n independent conserved quantities to serve as action variables. Then it is not
possible to find action-angle variables and we say the system is not integrable. Note also that the action variables
must Poisson commute with each other, so that they form a canonical family with their conjugate angle variables
{θi, Ij} = δij , {Ii, Ij} = {θi, θj} = 0.

22In the sequel, we will indicate, how to proceed with a generator of type F1(q, θ) .
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• In general, W will generate a CT to new canonical variables. The HJ equation does not by
itself pick out the CT to action-angle variables. To impose this additional requirement, we seek
solutions W (q, I) of the HJ equation subject to the condition that the action variable I be a
constant of motion. This will ensure that θ is a cyclic coordinate, since ∂K

∂θ = −İ = 0, so that
θ evolves linearly in time.

• The time derivative of W is

dW (q, I)

dt
=
∂W

∂q

dq

dt
= pq̇ since İ = 0. (282)

Thus we must have

W (q(t), I) = W (q(t0), I)+

∫ t

t0

pq̇ dt = W (q(t0), I)+

∫ q

q0

pdx where p(x,E) =
√

2m(E − V (x)).

Any such W is a solution of the HJ equation for some E as we check: differentiating the integral,
∂W
∂q = p =

√
2m(E − V (q)) so the time-independent HJ equation is satisfied. These solutions

of HJ are parametrized by a ‘constant of integration’ W (q(t0), I) which can be an arbitrary
function of the action variable, since it drops out of ∂W

∂q . However, W (q(t0), I) does affect the

dependence of W on I , and through this, it affects the angle variable θ = ∂W
∂I .

• In particular, we see that there are many sets of action-angle variables for the same system,
obtained by different choices of the constant of integration.

• The second term
∫ q
q0
p dq′ is sometimes called an abbreviated action integral23. It depends

in a specific way on both q and I . The dependence on q is via the upper limit of integration,
while the dependence on I is through p . The integrand p is determined by solving H(q, p) = E
for p . For the above example,

p(q, I) =
√

2m [E(I)− V (q)]. (283)

For a single degree of freedom, E must be a function of I as there is only one independent
conserved quantity. More generally, E is a function of the action variables E = K(I) = H(q, p)
since the hamiltonian in the new variables depends only on the action variables.

• We could also have proceeded using a generating function of type 1. If we use F1(q, θ) instead

of W (q, I), then the HJ equation still reads H(q, ∂F1(q,θ)
∂q ) = E . Now both q and θ depend on

time and Ḟ1 = (F1)q q̇ + (F1)θθ̇ = pq̇ − Iθ̇ . Here subscripts q, θ denote partial derivatives. The
condition that I and θ be action-angle variables is imposed by requiring that both I and θ̇ ≡ ω
be a constant. We could then integrate and find F1 as before, but with the extra term.

5.5.3 Generating function for CT to action-angle variables for harmonic oscillator

• For the SHO, we already found action-angle variables and we now seek a generating function
from:

(q, p) to I =
E

ω
and θ = arctan

[
qmω

p

]
. (284)

Based on the previous section, a candidate generating function for the CT to action-angle
variables is provided by hamilton’s characteristic function W (q, I), which is a solution of the HJ

23Recall that S =
∫ tf
ti

(pq̇ −Hdt) was also called the action.
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equation. So let us consider the abbreviated action integral, which is automatically a solution
of HJ

W (q, I) =

∫ q

0
p dx =

∫ q

0

√
2m(Iω − V (x)) dx where ω2 =

k

m
and V (x) =

1

2
kx2. (285)

We fixed the constant of integration by the convenient choice W (q(0), I) = 0. Evaluate the
integral and find W (q, I) explicitly. Verify that the resulting function generates the desired
transformation.

∂W

∂q

?
= p =

√
2m(E − V ) and

∂W

∂I

?
= θ = arcsin

(
q

√
k

2Iω

)
. (286)

So we have found a generating function of the second kind W (q, I) that allows us to pass to
action-angle variables for the harmonic oscillator.

• The generating function takes a simpler form when expressed in terms of the old coordinates
and the new coordinates, i.e., as F1(q,Q), which is obtained via a Legendre transform

F1(q, θ) = extI [W (q, I)− Iθ] (287)

Exercise: Find F1(q, θ). For this CT we are free to use a generator of either kind.

5.5.4 Action-angle variables for systems with one degree of freedom

• Based on our experience with the SHO, we briefly comment on a passage to action-angle
variables for a system with one degree of freedom and conserved hamiltonian, say

H(q, p) =
p2

2m
+ V (q) (288)

We will suppose that V (q) is such that all the phase space trajectories are bounded and periodic
in time as for V (q) = 1

2q
2 + q4 . This is guaranteed if V (q) → ∞ sufficiently fast, as |q| → ∞ .

Further assume that for a given energy there is a unique periodic trajectory in phase space24.
Then we define the action variable as the area enclosed by that phase trajectory

I(E) =
1

2π

∮
p(E, q) dq =

1

2π

∮ √
2m (E − V (q)) dq. (289)

This also defines E as a function of I , there is only one independent conserved quantity. As
before, we look for a generating function of the second kind that allows us to transform to
action-angle variables. We do this by solving the HJ equation via an abbreviated action integral
with a convenient choice of constant of integration (set to zero below)

W (q, I) =

∫ q

0
p(E(I), x) dx =

∫ q

0

√
2m (E − V (q)) dx (290)

The angle variable is defined by θ = ∂W
∂I and moreover, p = ∂W

∂q . By virtue of having a
generating function, we are guaranteed that {θ, I} = 1, i.e., they are canonically conjugate.
Moreover, since the hamiltonian H = E(I) = K(I) is a function of I alone, θ is cyclic, I is
conserved, and θ is linear in time. Thus we have a way of identifying action-angle variables for
such a system with 1 degree of freedom.

24There are potentials such as V = −q2 +q4 for which there may be more than one phase trajectory for a given
energy. Then I(E) is a multi-valued function of energy.
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5.5.5 Action-angle variables for simple pendulum

• Let us obtain action-angle variables for the simple pendulum with hamiltonian H =
p2
θ

2ml2
−

mgl cos θ and canonical variables with p.b. {θ, pθ} = 1 and angular frequency ω =
√
g/l . We

abbreviate p ≡ pθ and will restrict to the region of phase space inside the separatrix where we
have libration, i.e., E < mgl . The action variable may be written as twice the integral between
the left and right turning points ±θmax = ± arccos(−ε)

I(E) =
1

2π

∮
p dθ =

√
2ml2

2π
2

∫ θmax

−θmax

√
E +mgl cos θ dθ =

√
2mωl2

π

∫ θmax

−θmax

√
ε+ cos θ dθ (291)

where ε = E/mgl . This implicitly defines the energy E(I) as a function of action I . The
integral can be expressed in terms of complete elliptic integrals of the first two kinds though we
do not do so here.

• Hamilton’s characteristic function W (q, I) that generates the CT to action-angle variables is
an incomplete elliptic integral:

W (q, I) =

∫ θ

p(θ′)dθ′ =

∫ θ√
(2ml2)(E +mgl cos θ) dθ =

√
2mωl2

∫ θ√
ε+ cos θ dθ. (292)

If we evaluate this integral explicitly, then we could find the angle variable by differentiation
Θ = ∂W

∂I and p = ∂W
∂θ . However, there is another way of proceeding that exploits our knowledge

of a formula for the time period T (E) of a pendulum, as a function of energy.

• To get the angle variable Θ (not to be confused with θ !) we begin with Hamilton’s equation
Θ̇ = ∂E

∂I = dE
dI which is just 2π times the reciprocal of the time period for the periodic librational

trajectory

Θ̇ =
dE

dI
=

(
dI

dE

)−1

=
2π

T (E)
=

πω

2K(k)
where k =

√
1

2

(
1 +

E

mgl

)
(293)

and K(k) is the complete elliptic integral of the first kind. Since the elliptic modulus k is a
constant, the angle varies linearly in time

Θ(t) =
πωt

2K(k)
+ Θ(0) (294)

We will work with the initial condition Θ(0) = 0 for simplicity. To specify the canonical trans-
formation, let us now express the old variables θ, pθ in terms of the new ones Θ, I . Recall that
the librational trajectory with initial condition θ(0) = 0 is given by θ(t) = 2 arcsin[k sn(ωt, k)]
substituting for t in terms of Θ(t) we get (note that the initial conditions for θ and Θ are
consistent)

θ(t) = 2 arcsin

[
k sn

(
2K(k)Θ(t)

π
, k

)]
(295)

The old momentum is given by p2
θ = 2ml2(E +mgl cos θ). Show that it can be expressed as

pθ(t) = 2ml2ωk cn

(
2K(k)Θ(t)

π
, k

)
. (296)

The last two equations give the old variables θ, pθ in terms of the new angle Θ and action I ,
thus specifying the CT.
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5.5.6 Time dependent Hamilton-Jacobi evolution equation

• Time evolution is particularly simple in action-angle variables where the hamiltonian is inde-
pendent of all coordinates. An even more extreme case of canonical variables is that in which
the hamiltonian is independent of all coordinates as well as momenta, i.e., if the hamiltonian
is a constant. By a choice of zero of energy, this constant may be taken as zero. Now if the
hamiltonian in the new variables K = 0, then the new coordinates and momenta are both
constant in time, and are therefore determined by their initial values: Qi(t) = Qi(0) = βi and
Pi(t) = Pi(0) = αi . Time evolution is very simple in such variables! However, it is not always
possible to find canonical variables in which K = 0. But if it is possible, then the generator
of the CT to such variables must satisfy an interesting non-linear first order PDE called the
(time-dependent) Hamilton-Jacobi equation. Let us look for a generating function of the second
type F2(q, P, t) for the transformation from (q, p,H) → (Q,P,K). For reasons to be clarified
later, it is conventional in this context to denote F2 by S(q, P, t) and call it Hamilton’s principal
function. Pi are the new constant momenta and pi = ∂S

∂qi
. Then S must satisfy25

K = H(q, p, t) +
∂S(q, P, t)

∂t
= 0 or H

(
qi,

∂S

∂qj
, t

)
+
∂S

∂t
= 0. (297)

This is the Hamilton-Jacobi equation (HJ), a first order (generally non-linear) PDE for the
unknown generating function S in n+ 1 variables q1, · · · , qn, t . For a particle in a 1D potential
V (q), it is a PDE for one unknown function S of two independent variables q, t :

∂S

∂t
+

1

2m

(
∂S

∂q

)2

+ V (q) = 0. (298)

• We will be interested in so-called ‘complete integrals/solutions’ of HJ, which depend on n+ 1
constants of integration. These are of the form

S = S(q1, · · · qn, α1 · · ·αn, t). (299)

We haven’t indicated the dependence on the (n+ 1)th constant of integration αn+1 . αn+1 may
be taken as an additive constant in S , since only derivatives of S appear in the HJ eqn. We
will choose αn+1 = 0 since it will be seen not to enter the equations of transformation p = ∂S

∂q ,

Q = ∂S
∂P and K = H + ∂S

∂t . The origin of these constants of integration will be clarified when
we discuss the method of separation of variables to solve the HJ equation. In favorable cases
(such as the free particle), the HJ PDE can be reduced to a set of n decoupled first order ODEs,
whose solution introduces the required constants of integration.

• The virtue of a ‘complete’ solution of the HJ equation is that it provides a way of solving
for the time evolution of the original mechanical system, i.e., of expressing qi(t) and pj(t) in
terms of their initial values. First, we are free to take (i.e., define) the new constant momenta
to equal the constants of integration, i.e., Pj = αj . (We could also take the Pj to be some n
independent functions of the αj .)

25If H is explicitly time-dependent, then one wonders whether we may end up with a new hamiltonian K(t)
which is a constant on phase space, but a different constant at different times. Such a time-dependent K can be
got rid of by adding to S a function f(t) satisfying K(t) = ∂f

∂t
. So any residual time dependence in the new

hamiltonian can be removed.
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• The equations of transformation in terms of the generator S read

pj =
∂S(q, α, t)

∂qj
and βi = Qi =

∂S(q, α, t)

∂αi
. (300)

The second equation may be used to solve for qi = qi(αj , β
k, t). This may be put in the first

equation to find pi = pi(αj , β
k, t). Now the solution of the mechanical problem in the sense

mentioned above would be obtained if we express αj , β
k in terms of the initial values of the old

variables qi(0) and pi(0). To do this, let us consider these equations at t = 0. We get

pj(0) =
∂S(q, α, t)

∂qj
and βi =

∂S(q(t), α, t)

∂αi
evaluated at t = 0 . (301)

We may use the first equation to express αi in terms of qi(0) and pi(0). Then the second
equation gives us βi in terms of qj(0) and pk(0).

• Using the above results, we get

qi(t) = qi(qj(0), pk(0), t) = qi(α, β, t) and pi(t) = pi(q
j(0), pj(0), t) = pi(α, β, t) (302)

These give the solution to the mechanical problem since they express the old coordinates and
momenta in terms of their initial values.

• It is not always possible to find a complete solution of the HJ equation. Sometimes, one may
find a solution S depending on less than n+ 1 constants of integration. Even this can be used
to provide a partial understanding of the original mechanical problem.

5.5.7 Hamilton-Jacobi equation as semi-classical limit of Schrodinger equation

• We began with Newton’s formulation of a mechanical system in terms of a system of non-linear
ODEs for cartesian coordinates. We progressed to Lagrange’s equations which are still ODEs,
but whose form is invariant under changes of coordinates on configuration space. Then came
hamilton’s ODEs which are form-invariant under canonical transformations on phase space.
The Poisson bracket formulation of hamilton’s equations ḟ = {f,H} take the same form for
any observable and any system of coordinates on phase space (canonical or not). Now we have
reformulated time-evolution of a hamiltonian system in terms of a single non-linear first order
PDE for a generating function S(q, P, t). This brings the equations of particle mechanics closer in
spirit to the PDEs for waves: classical EM waves in the short wavelength Eikonal approximation
and quantum matter waves in the semi-classical approximation. Recall the Schrodinger equation
for time evolution of the wave function of a particle in a potential V :

i~
∂Ψ

∂t
= HΨ = − ~2

2m
∇2Ψ + VΨ (303)

As we know from the free particle stationary state wave function Ψ(x, t) = ei(px−Et)/~ , which
has an essential singularity at ~ = 0, the wave function itself does not have a good classical
limit. But the quantity S defined by Ψ = eiS/~ is better placed to have a finite ~ → 0 limit.
We have

∇Ψ =
i

~
Ψ∇S, ∇2Ψ = − 1

~2
Ψ∇S · ∇S +

i

~
Ψ∇2S, (304)
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so the Schrodinger equation becomes, upon cancelling eiS/~ 6= 0,

−∂S
∂t

=
1

2m
|∇S|2 + V − i~

2m
∇2S (305)

No approximation has been made, though we assume that ψ is expressible as eiS/~ for some
S 26. In the limit ~→ 0 we ignore the last term and get the Hamilton-Jacobi evolution equation:

∂S

∂t
+
|∇S|2

2m
+ V = 0 or

∂S

∂t
+H(q,∇S) = 0. (306)

5.5.8 Separation of variables (SOV) in Hamilton-Jacobi equation

• Ironically, many of us are more familiar with solving the Schrödinger equation than the HJ
equation, which predates it. We may use this experience to motivate the method of separation
of variables to solve the HJ equation. Recall that if the hamiltonian isn’t explicitly dependent on
time, then we may multiplicatively separate the time-dependence by writing Ψ(t, q) = T (t)ψ(q).
ψ(q) must solve the time-independent Schrodinger eigenvalue problem, and T (t) = e−iEt/~

where E is the separation constant and energy eigenvalue. Since Ψ ∼ eiS/~ , multiplicative
separation of variables in the quantum wave function is replaced by additive SOV in hamilton’s
principle function. So, if H = H(q, p) is not explicitly dependent on time, so that the hamilto-
nian is a constant of motion, then we may seek a solution of the HJ equation H(q, ∂S∂q ) + ∂S

∂t = 0
in the form

S(q, P, t) = W (q, P )− Et (307)

Inserting this in HJ, we find that it is satisfied provided W solves the time-independent HJ
equation for Hamilton’s characteristic function

E = H

(
q,
∂W

∂q

)
. (308)

• Free particle in 1D: The simplest case to consider is H = p2/2m . The HJ equation is

∂S

∂t
+

1

2m

(
∂S

∂q

)2

= 0. (309)

Since H isn’t time dependent, we take S = −Et + W (q, P ) and get the time-independent HJ
equation 1

2m(∂W∂q )2 = E which is now an ODE. Upto an additive constant W (q) = q
√

2mE .

Thus we have found a complete solution S = −Et+ q
√

2mE of the HJ equation depending on
one constant of integration. For convenience, we take this constant of integration as α = P =√

2mE . So

S = −P
2

2m
t+ qP + constant. (310)

We notice that W (q, P ) = qP generates the identity CT, while S deviates from the identity
by an amount that grows linearly with time, as we might expect. The additive constant in
S may be set to zero. The first equation of transformation says p = ∂S

∂q = P . So the new

26S would have to diverge at points where Ψ vanishes.
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momentum is conserved and equals the old momentum, and so, P = p(0). The second equation
of transformation gives us the new coordinate

Q =
∂S

∂P
= q − Pt

m
= q(t)− p(0)t

m
. (311)

Since the new coordinate is guaranteed to be a constant of motion, we evaluate it at t = 0
and find Q = q(0). Thus the new coordinate is equal to the initial location. This allows us

to solve the initial value problem q(t) = Q + p(0)t
m . Finally, the new hamiltonian vanishes by

construction: K = H + ∂S
∂t = E − E = 0.

• The free particle in 3D: may be treated similarly. The HJ equation

∂S

∂t
+

1

2m

((
∂S

∂q1

)2

+

(
∂S

∂q2

)2

+

(
∂S

∂q3

)2
)

= 0. (312)

reduces to the time independent HJ equation E = 1
2m

((
∂W
∂q1

)2
+
(
∂W
∂q2

)2
+
(
∂W
∂q3

)2
)

upon

putting S = −Et + W (q). We further separate variables by taking W = W1(q1) + W2(q2) +
W3(q3) to get

W ′1(q1)2 +W ′2(q2)2 +W ′3(q3)2 = 2mE (313)

Since rhs is a constant and lhs is a sum of terms depending on different variables, each must be
a constant that we denote α2

j . The new momenta Pj are taken to equal the αj ,

W ′1(q1)2 = P 2
1 , W ′2(q2)2 = P 2

2 , and W ′3(q3)2 = P 2
3 where

1

2m
(P 2

1 + P 2
2 + P 2

3 ) = E. (314)

We have a complete solution of the HJ equation depending on 3 constants of integration
P1, P2, P3 :

S = − 1

2m
(P 2

1 + P 2
2 + P 2

3 )t+ q1P1 + q2P2 + q3P3. (315)

A 4th constant of integration is an additive constant that we omit. Partial derivatives of hamil-
ton’s principal function with respect to the old coordinates give

pj =
∂S

∂qj
⇒ pj = Pj (316)

So the constant new momenta are just the old momenta, which must be constants of motion
Pi = pi = pi(0). Partial derivatives of S with respect to the new momenta give the new
coordinates

Qi =
∂S

∂Pi
⇒ Qi = − tPi

m
+ qi (317)

Since Qi must be constant, we evaluate them at t = 0 and find Qi = qi(0) are just the initial
values of the old coordinates. Thus the solution of the initial value problem is

qi(t) = qi(0) +
pi(0)t

m
. (318)

• For the free particle we were able to separate all the variables (t, q1, q2, q3) in the HJ equation
and write Hamilton’s principal function as a sum of terms involving just one variable each.
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The HJ equation for a free particle is said to be separable. If the time-dependent HJ equation
is separable, we may reduce it to a collection of ODEs, each of which is solved separately.
Separability of the HJ equation is another viewpoint on what it means for a system to be
‘solvable’.

• This additive SOV S = −Et+W (q) in the classical HJ equation is replaced in QM by mul-
tiplicative SOV Ψ(q, t) = e−iEt/~ψ(q) in the Schrodinger equation for a system with conserved
energy. Moreover, the stationary state wave function is related to hamilton’s characteristic
function via ψ(q) ∝ eiW (q)/~ in the semiclassical limit ~ → 0. The further additive SOV for
hamilton’s characteristic function W (q) = W1(q1) + W2(q2) is replaced in QM by the multi-
plicative SOV of the stationary state wave function ψ(q1, q2) = ψ1(q1)ψ2(q2).

5.5.9 Hamilton’s principal function is action regarded as a function of end point of a
trajectory

• We introduced hamilton’s principal function F2(q, P, t) = S(q, P, t) as the generating function
of a CT to coordinates and momenta, both of which are time-independent. It satisfies the time

dependent HJ equation ∂S
∂t + H

(
q, ∂S∂q , t

)
= 0. Hamilton’s principal function is related to the

action, which is the reason we use the same letter S for both. To see this, we compute the time
derivative of an F2 that satisfies the HJ equation

Ḟ2 =
∂F2

∂qi
q̇i+

∂F2

∂t
= piq̇

i+
∂F2

∂t
= piq̇

i−H = L ⇒ F2(q(t), t)−F2(q(t0), t0) =

∫ t

t0

[pq̇−H]dt′

(319)
t0 was taken to be zero in the previous section. So S is like the action that appears in Hamilton’s
variational principle. But now, it is regarded as a function of the (variable) final location and
final time of a trajectory, rather than as a functional of a whole path holding the end points
fixed27. Furthermore, the variables conjugate to the (final) time and coordinates, namely the
(final) hamiltonian and momenta, are expressed as partial derivatives

H = −∂F2

∂t
and pi =

∂F2

∂qi
. (320)

Note that to specify a trajectory that begins at fixed q(t0) at t0 , we need to say what the
initial momenta are. So F2(q(t), t) also depends on the initial momenta p(t0), though we did
not indicate this explicitly above. It is through these initial momenta and initial coordinates
that hamilton’s principal function F2 = S(q, P, t) acquires a dependence on Pi . Indeed, for the
free particle, we saw that we could take Pi = pi(t0). In general, the relation is obtained by

evaluating pi = ∂S(q,P,t)
∂qi

at t = t0 .

• Just as Hamilton’s principal function is related to the action, Hamilton’s characteristic function
W (q, P ) is related to the abbreviated action. To see this, we compute

dW

dt
=
∂W

∂qi
q̇i +

∂W

∂Pi
Ṗi = piq̇

i. (321)

Thus W (q(t), P ) = W (q(t0), P ) +
∫ t
t0
piq̇

i dt′ where the integration is along the trajectory which
starts at q(t0) at t0 with initial momentum p(t0). Here the constant P is determined in terms of

27Recall that a trajectory is a path (in this context, a path on phase space) that satisfies the equations of
motion.
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q(t0), p(t0) using p(t0) = ∂W (q,P )
∂q |t=t0

. So hamilton’s characteristic function is the abbreviated

action evaluated on a trajectory with fixed initial point and viewed as a function of a variable
end point.

5.5.10 Geometric interpretation of HJ: trajectories are orthogonal to HJ wave fronts

• Let us discuss a geometric interpretation of Hamilton’s principal function S(q, P, t). For
fixed constant new momenta P , we think of S(q, P, t) as a time-dependent scalar function of
q on the n-dimensional configuration manifold Q . Then at each instant of time, S(q, P, t)
defines a family of hyper-surfaces in Q , namely, the constant S hyper-surfaces of dimension
n − 1. A hyper-surface is a manifold of dimension one less than that of the ambient space.
We will call these constant S hyper-surfaces ‘wave fronts’. These are to be regarded as the
instantaneous wave fronts of a propagating wave/disturbance that is governed by the HJ wave
equation ∂S

∂t + H(q, ∂S∂q ) = 0. At a given time, each wave front is labeled by the value of S on
it. As time progresses, the wave front with a given value of S = S0 moves. In addition, we
also have a family of curves in Q , namely the trajectories for various possible initial locations
qi(0) and fixed initial momenta pi(0) = ∂S

∂qi
, which are determined by the constants Pj and

qi(0). Now, let us display a geometric relation between the wave fronts and trajectories by first
examining the solution of the free particle HJ equation.

• For a free particle moving in 2D, Hamilton’s principal function is S = −Et+ xP1 + yP2

where ~q = (x, y), P1 and P2 are constants and 2mE = P 2
1 + P 2

2 . At any fixed time t0 , the
constant S = S0 hypersurfaces are a family of lines xP1 + yP2 = S0 +Et0 . These are the wave
fronts at t = t0 , they are the lines perpendicular to the vector (P1, P2). Though individual wave
fronts move, the set of wave fronts at any other time is the same set of lines as at t0 . This is
essentially because E is time independent.

• On the other hand, trajectories are (x(t), y(t)) = (x0 + P1t
m , y0 + P2t

m ). Subtracting, trajectories
are the family of lines P2x − P1y = P2x0 − P1y0 , which is the same as (P2,−P1) · (x, y) =
P2x0 − P1y0 . In other words, trajectories are the lines (not necessarily through the origin),
orthogonal to the vector (P2,−P1).

• Since the normal (P1, P2) to the wave fronts is perpendicular to the normal (P2,−P1) to the
trajectories, it follows that the trajectories are everywhere orthogonal to the wave fronts.

• For a free particle in 3D, the complete solution of the HJ equation is

S = −Et+ xP1 + yP2 + zP3 where 2mE = P 2
1 + P 2

2 + P 2
3 . (322)

In this case, the constant S hypersurfaces are planes orthogonal to the vector P = (P1, P2, P3),
i.e., (x, y, z) · (P1, P2, P3) = S + Et = const. The wave fronts evolve but the set of all wave
fronts is independent of time. Trajectories are still straight lines r = r0 + Pt

m . So trajectories are
parallel to the vector P which is everywhere normal to the wave fronts. Thus the free particle
trajectories are everywhere orthogonal to the wave fronts.

• Particle subject to a potential moving on a Riemannian manfold: More generally,
let us consider a classical system whose configuration space is a Riemannian manifold Q with
metric gij and whose kinetic energy is quadratic in velocities L = 1

2gij q̇
iq̇j −V (q). For instance

for V = 0, this could describe a free particle moving on Q in the absence of any external
potential. We know that the conjugate momenta are pi = gij q̇

j and the Hamiltonian is H =
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1
2g
ijpipj + V (q). For V = 0 Lagrange’s equations are the geodesic equations q̈l + Γlij q̇

iq̇j = 0.
The HJ equation for Hamilton’s principal function S(q, P, t) is

∂S

∂t
+

1

2
gij

∂S

∂qi
∂S

∂qj
+ V (q) = 0 where pj =

∂S

∂qj
. (323)

For a free particle moving in 2D or 3D Euclidean space, we found that the trajectories are
orthogonal to the wave fronts (level hyper-surfaces of S ) at each point. We will show the same
for the above Lagrangian system even with a potential.

• A normal vector to a hyper-surface of constant S is given by the gradient of S . It has
components ni = (grad S)i = gij∂jS . Since S is a generating function of second type, ni =
gijpj = q̇j . But this just says that the velocity vector at a point along a trajectory is equal to
the normal to the wavefront through that point. Thus the trajectories are everywhere normal
to the HJ wave fronts!

• This is a classical version of ‘wave-particle’ duality. The same physical system can
be described either via point-particle trajectories that solve a system of ODEs, or via evolving
wave fronts obtained from solving a PDE. Sometimes, the trajectories are called characteristic
curves and Hamilton’s ODEs are called the equations for the characteristics associated to the
HJ PDE.

• One may use this connection between trajectories and wave fronts to give an alternate deriva-
tion of the geodesic equation on Q from the HJ equation by considering the special case V = 0.
If xi(t) is a curve whose tangent vector ẋ equals the normal to the HJ wave front at every point,
then

ẋi = gij∂jS (324)

We may eliminate S and obtain a differential equation for xi(t). We differentiate once in
time and use Ṡ = ∂tS + ∂kSẋ

k , the HJ equation ∂tS = −H = −1
2gij ẋ

iẋj and the fact that
∂jS = pj = gjkẋ

k :

ẍi = gij,kẋ
k∂jS + gij∂j∂tS + gij∂j∂kS ẋ

k = gij,kẋ
kpj − gij∂jH + gij∂jpkẋ

k

= gij,kẋ
kgjlẋ

l − gij 1

2
gkl,j ẋ

lẋk + gijgkl,j ẋ
kẋl =

[
gij,kgjl +

1

2
gijgkl,j

]
ẋlẋk. (325)

We also used ∂j ẋ
k = d

dtδ
k
j = 0. Differentiating the identity gijgjl = δil in xk one has gij,kgjl +

gijgjl,k = 0. Exploiting the symmetry of ẋlẋk under k ↔ l , we find that the curve x(t) satisfies
the geodesic equation

ẍi +
1

2
gij (gjl,k + gjk,l − gkl,j) ẋkẋl = 0. (326)

Remark: If V 6= 0, trajectories aren’t geodesics with respect to the metric gij , but they remain
orthogonal to the wave fronts.

6 Oscillations

6.1 Double pendulum

• The double pendulum is a system with a minimal number of degrees of freedom that displays
both regular and chaotic dynamics in various energy regimes. It is an interesting and non-trivial
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Figure 4: Double pendulum with two bobs of masses m1,m2 suspended from a fixed support with
massless rods of length l1, l2 . The respective counterclockwise deflection angles are θ1, θ2 .

model system to study. As a general rule of thumb, if a system admits more conserved quantities,
then the dynamics is more constrained and may display more regularity (the best possibility is
integrability). A system with 2 degrees of freedom has a 4d phase space. In the absence of any
conserved quantity, the trajectory could explore the whole of phase space. If energy is conserved,
the trajectory must lie on a 3d constant energy sub-manifold of phase space, determined by initial
conditions. If there is another conserved quantity Q functionally independent of energy, then
trajectories must lie on the intersection of a constant E and constant Q sub-manifold, which is
in general a 2D surface in phase space. We see that the presence of more conserved quantities
restricts the dynamics.

• We consider a double pendulum with ‘lower’ bob of mass m2 suspended by a massless rod of
length l2 from an ‘upper’ bob of mass m1 which is in turn suspended from a fixed pivot by a
massless rod of length l1 (see figure 4). The system has 2 degrees of freedom, it is free to move
in a vertical plane subject to gravity. The rods make angles θ1, θ2 counterclockwise relative to
the downward vertical. The cartesian coordinates of the two bobs are

r1 = (x1, y1) where x1 = l1 sin θ1 and y1 = −l1 cos θ1, and
r2 = (x2, y2) where x2 = l1 sin θ1 + l2 sin θ2 and y2 = −l1 cos θ1 − l2 cos θ2. (327)

• Assuming the potential energy vanishes at the height of the pivot, the potential and kinetic
energies are

V = −m1gl1 cos θ1 −m2g(l1 cos θ1 + l2 cos θ2) and

T =
m1

2

(
ẋ2

1 + ẏ2
1

)
+
m2

2

(
ẋ2

2 + ẏ2
2

)
=
m1

2
l21θ̇

2
1 +

m2

2

[
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2c12θ̇1θ̇2

]
. (328)

Here we abbreviate s12 = sin(θ1 − θ2) and c12 = cos(θ1 − θ2). To simplify things, we take bobs
of equal masses m and rods of equal length l . In this case, |V | ≤ 3mgl while 0 ≤ T <∞ .

• The configuration space of the double pendulum is a torus T2 = S1 × S1 with coordinates
θ1 ∈ S1, θ2 ∈ S1 . The Lagrangian is

L = T − V =
1

2
ml2

[
2θ̇2

1 + θ̇2
2 + 2c12θ̇1θ̇2

]
+mgl [2 cos θ1 + cos θ2] . (329)

The momenta conjugate to θ1, θ2 are

p1 =
∂L

∂θ̇1

= ml2
[
2θ̇1 + c12θ̇2

]
and p2 =

∂L

∂θ̇2

= ml2
[
θ̇2 + c12θ̇1

]
. (330)
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The conjugate momenta do not coincide with the angular momenta of the two bobs, though
their sum coincides with the total angular momentum of the pendulum. The angular momenta
are

L1 = mr1 × ṙ1 = ml2θ̇1 ẑ and L2 = mr2 × ṙ2 = ml2
[
θ̇1 + θ̇2 + c12

(
θ̇1 + θ̇2

)]
ẑ (331)

L = L1 + L2 = (p1 + p2)ẑ . We will use the conjugate momenta p1, p2 rather than the angular
momenta.

• The ‘generalized forces’ are

∂L

∂θ1
= −ml

[
2g sin θ1 + ls12 θ̇1θ̇2

]
and

∂L

∂θ2
= ml

[
ls12 θ̇1θ̇2 − g sin θ2

]
. (332)

Lagrange’s equations of motion are a pair of second order non-linear ODEs

2θ̈1 + c12 θ̈2 + s12 θ̇
2
2 + 2ω2 sin θ1 = 0 and θ̈2 + c12 θ̈1 − s12 θ̇

2
1 + ω2 sin θ2 = 0. (333)

They involve only one material parameter ω2 = g/l . Upon expressing the generalized velocities
in terms of momenta,

θ̇1 =
p1 − c12p2

ml2(1 + s2
12)

and θ̇2 =
2p2 − c12p1

ml2(1 + s2
12)

(334)

we find the conserved hamiltonian H = p1θ̇1 + p2θ̇2 − L = T + V

H =
1

2ml2(1 + s2
12)

[
p2

1 + 2p2
2 − 2c12p1p2

]
−mgl[2 cos θ1 + cos θ2]. (335)

The conserved energy may also be expressed in terms of coordinates and velocities:

E =
1

2
ml2

[
2θ̇2

1 + θ̇2
2 + 2c12θ̇1θ̇2

]
−mgl[2 cos θ1 + cos θ2]. (336)

The phase space of the double pendulum is four dimensional, with coordinates θ1 ∈ S1, θ2 ∈
S1, p1, p2 ∈ R . The phase space is the cartesian product of a torus and a plane T2 × R2

• Besides energy, the double pendulum does not possess any obvious conserved quantity. How-
ever, when the energy is very large, most of it is kinetic since the gravitational potential energy
is bounded between ±3mgl . For example, the two bobs could just go round very fast in uni-
form circular motion. So in the limit of high energies (E � 3mgl) we should be able to ignore
the gravitational force, and the torque it imparts. As a consequence, total angular momentum
L = L1 + L2 should be conserved at asymptotically high energies. We already know that

L = L1 + L2 = ml2
[
2θ̇1 + θ̇2 + 2c12(θ̇1 + θ̇2)

]
ẑ = (p1 + p2)ẑ (337)

This expression for the conserved total angular momentum may also be obtained using Noether’s
theorem. The Lagrangian ignoring gravity

L = T =
1

2
ml2

[
2θ̇2

1 + θ̇2
2 + 2 cos(θ1 − θ2)θ̇1θ̇2

]
(338)

73



is invariant under (infinitesimal) rotations θ1 → θ1 + δφ, θ2 → θ2 + δφ . Noether’s theorem
guarantees conservation of

p1 δθ1 + p2 δθ2 = δφ ml2[2θ̇1 + c12θ̇2] + δφ ml2[θ̇2 + c12θ̇1] (339)

Since δφ is arbitrary, we may omit it and get an expression for the conserved angular momentum

L = (p1 + p2)ẑ = ml2
[
(2 + c12)θ̇1 + (1 + c12)θ̇2

]
ẑ (340)

Numerical solutions of the equations of motion of the double pendulum show that L fluctuates
around a mean value. As the energy increases, the fluctuations in L get smaller, and in the
limit of infinite energy, angular momentum is exactly conserved just as for the simple pendulum
(see fig.2).

6.1.1 Small oscillations of a double pendulum: normal modes

• In general, it has not been possible to solve the equations of motion of a double pendulum
in closed form due to their non-linearities (not even with elliptic functions! The motion is
chaotic!). However, if the deflection angles are always small, we may linearize the equations of
motion and solve them. The motion reduces to the integrable dynamics of a pair of coupled
harmonic oscillators. Let us see why.

• If both |θ1|, |θ2| � 1 we may approximate the trigonometric functions cos and sin by their
quadratic Taylor polynomials in the kinetic and potential energies, so that the resulting equations
of motion become linear. The Lagrangian becomes

L =
1

2
ml2

[
2θ̇2

1 + θ̇2
2 + 2θ̇1θ̇2

]
+mgl

[
3− θ2

1 −
1

2
θ2

2

]
= T − V. (341)

We omit the constant 3mgl from the Lagrangian: it doesn’t affect the eom. The conjugate
momenta are

p1 = ml2
(

2θ̇1 + θ̇2

)
and p2 = ml2

(
θ̇1 + θ̇2

)
. (342)

and

θ̇1 =
p1 − p2

ml2
and θ̇2 =

2p2 − p1

ml2
. (343)

The equations of motion depend only on one physical parameter ω2 = g/l :

2θ̈1 + θ̈2 + 2ω2θ1 = 0 and θ̈1 + θ̈2 + ω2θ2 = 0. (344)

The corresponding conserved energy is H = T + V ,

H =
ml2

2

[
2θ̇2

1 + θ̇2
2 + 2θ̇1θ̇2

]
+mgl

[
θ2

1 +
θ2

2

2

]
=

1

2ml2
[
p2

1 + 2p2
2 − 2p1p2

]
+mgl

[
θ2

1 +
θ2

2

2

]
.

(345)
The equations of motion are now a pair of coupled second order linear ODEs with constant
coefficients. It is possible to change variables to normal modes to get a pair of de-coupled linear
ODEs. Let us first write the eom in matrix form

d2

dt2

(
2 1
2 2

)(
θ1

θ2

)
= −2ω2

(
θ1

θ2

)
(346)
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If we let B be the constant coefficient matrix,

B =

(
2 1
2 2

)
and θ =

(
θ1

θ2

)
then

d2

dt2
Bθ = −2ω2θ (347)

Though B is not a symmetric matrix, it has distinct eigenvalues λ± = 2 ±
√

2, and therefore
can be diagonalized. The corresponding eigenvectors are not orthogonal, but may be taken as

a+ =
1

2

(
1√
2

)
and a− =

1

2

(
1

−
√

2

)
. (348)

B may be diagonalized by a (non-orthogonal) similarity transformation S whose matrix repre-
sentation has columns that are the eigenvectors of B

S−1BS = D where S =
1

2

(
1 1√
2 −

√
2

)
, S−1 =

(
1 1√

2

1 − 1√
2

)
and D =

(
λ+ 0
0 λ−

)
. (349)

The equations of motion become

d2

dt2
SDS−1θ = −2ω2θ ⇒ d2

dt2
(S−1θ) = −2ω2D−1(S−1θ) (350)

If we denote

S−1θ = ξ =

(
ξ+

ξ−

)
=

(
θ1 + θ2√

2

θ1 − θ2√
2

)
and 2ω2D−1 =

(
2ω2

λ+

0 2ω2

λ−

)
=

(
ω2

+ 0
0 ω2

−

)
, (351)

then the components ξ± evolve via decoupled 2nd order ODEs

ξ̈+(t) = −ω2
+ξ+(t) and ξ̈−(t) = −ω2

−ξ−(t) where ω2
± =

2ω2

2±
√

2
. (352)

ξ±(t) are called normal modes of the system, they are periodic functions of time with periods

T± =
2π

ω±
=

2π

ω

√
1± 1√

2
. (353)

ξ±(t) may be expressed in terms of trigonometric functions of time

ξ+(t) = c1 cos(ω+t) + c2 sin(ω+t) and ξ−(t) = c3 cos(ω−t) + c4 sin(ω−t). (354)

The four coefficients ci are to be fixed using the initial conditions. The original deflection angles
are determined via θ = Sξ

θ1 =
1

2
(ξ+ + ξ−) and θ2 =

1√
2

(ξ+ − ξ−) . (355)

Note that the general motion of the double pendulum in the small angle approximation is not
periodic. The above solution is a linear combination of periodic functions whose periods are not
in rational ratio

T+

T−
=
ω−
ω+

=

√
λ+

λ−
= 1 +

√
2 /∈ Q (356)
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In general, the motion is quasi-periodic. The double pendulum does not return to its initial
state, but approaches it arbitrarily closely if we are willing to wait long enough. However, if
initial conditions are chosen so that only one of the two normal modes ξ+ or ξ− is present (e.g.
if c3 = c4 = 0), then the motion is periodic.

• We may use the normal modes to find a new conserved quantity for small oscillations of a
double pendulum. As for the simple pendulum or harmonic oscillator, from the equations of
motion,

ξ̈+ = −ω2
+ξ+ and ξ̈− = −ω2

−ξ− (357)

we infer that the energy of each normal mode is a constant of motion

H+ =
1

2
ml2

[
ξ̇2

+ + ω2
+ξ

2
+

]
and H− =

1

2
ml2

[
ξ̇2
− + ω2

−ξ
2
−

]
. (358)

The pre-factor ml2 is chosen so that H± have dimensions of energy. The total energy

H =
1

2
ml2[2θ̇2

1 + θ̇2
2 + 2θ̇1θ̇2] +mgl[θ2

1 +
1

2
θ2

2] (359)

is of course also conserved. Are H,H± functionally independent? This is unlikely since we
would expect the total energy to be a sum of energies contributed by the various normal modes,
which do not interact with each other. In fact, we will show that H is a weighted sum of the
energies of the normal modes H = 2λ+H+ + 2λ−H− . To see this we write the total energy as
a quadratic form and express θi in terms of normal modes ξi :

H =
1

2
ml2

(
θ̇1

θ̇2

)t(
2 1
1 1

)(
θ̇1

θ̇2

)
+mgl

(
θ̇1

θ̇2

)t(
1 0
0 1

2

)(
θ̇1

θ̇2

)
=

1

2
ml2θ̇tτ θ̇ +mglθtvθ

where τ =

(
2 1
1 1

)
and v =

(
1 0
0 1

2

)
. (360)

The kinetic and potential matrices τ and v are not uniquely defined. But if they are chosen
symmetric, then they are unique. We may add any anti-symmetric matrices to τ and v without
affecting the formula for energy. Writing θ = Sξ and using StτS = 2D = 2diag(λ+, λ−) and
StvS = 2I we get

H =
1

2
ml2 ξ̇t (StτS) ξ̇ +mgl ξt (StvS) ξ

= (2λ+)
1

2
ml2ξ̇2

+ + (2µ−)
1

2
ml2ξ̇2

− + (2λ+)
mgl

λ+
ξ2

+ + (2λ−)
mgl

λ−
ξ2
−

= 2λ+H+ + 2λ−H−. (361)

In the last step we used ω2
± = 2ω2/λ± to write

mgl

λ±
=
ml2ω2

λ±
=

1

2
ml2 ω2

± (362)

So of H , H1 and H2 , only two are independent conserved quantities. Thus we have identi-
fied a second conserved quantity for small oscillations of a double pendulum. In the limit of
low energies, we find that the motion of a double pendulum is integrable, we have explicitly
found the general solution. Before we attempt to study the dynamics of a double pendulum at
higher energies, let us discuss some general features of small oscillations (engineers use the term
vibrations) around static and periodic solutions.
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6.2 Normal modes of oscillation around a static solution: general framework

• Small oscillations of a double pendulum illustrate some features of the general method of
passage to normal modes of vibration for a system with n ≥ 2 degrees of freedom. Many inter-
esting mechanical systems have a Lagrangian of the form L = 1

2gij(q)q̇
iq̇j − U(q) where gij(q)

is a positive definite matrix on configuration space and U(q) is a potential energy. Lagrange’s
equations take the form

d

dt

(
gij(q)q̇

j
)

+
∂U

∂qi
= 0. (363)

For the double pendulum, gij = ml2
(

2 cos(θ1 − θ2)
cos(θ1 − θ2) 1

)
and U(θ) = −mgl(2 cos θ1 + cos θ2).

• If q0 is an extremum of U , then ∂U
∂qi

(q0) = 0 and a static solution of the eom is given by

qi(t) ≡ qi0 (so that q̇i(t) ≡ 0). (364)

For the double pendulum, θ1 = θ2 = 0 is a static solution. If a static solution occurs at a
minimum of the potential, we expect it to be stable under small perturbations, and may look for
small oscillations around the static solution. Let xi = qi−qi0 be the departure from equilibrium,
we expect it to remain small for all times. Then the Lagrangian may be expanded to quadratic
order (so that the equations of motion will be linear) in x by Taylor expanding gij(q) and U(q)
around q = q0 :

L = gij(q0)ẋiẋj − U(q0)− 1

2

∂2U(q0)

∂qi∂qj
xixj +O(x3). (365)

Without loss of generality we may take U(q0) = 0, a constant addition to the potential does not
affect the equations of motion. Let us abbreviate

gij(q0) = mij a mass matrix and
∂2U(q0)

∂qi∂qj
= kij a spring constant matrix. (366)

Then the Lagrangian to quadratic approximation around equilibrium is

L =
1

2
mij ẋ

iẋj − 1

2
kijx

ixj . (367)

For small oscillations of a double pendulum about the minimum energy static solution, we found

L =
1

2
ml2(2θ̇21+θ̇22+2θ̇1θ̇2)− 1

2
mgl(2θ21+θ22) ⇒ M = ml2

(
2 1
1 1

)
and K = mgl

(
2 0
0 1

)
. (368)

Check that both M and K are real symmetric positive matrices.

• The corresponding equations of motion are a system of n homogeneous linear 2nd order ODEs
with constant coefficients

mij ẍ
j + kijx

j = 0 or Mẍ = −Kx (369)

defined by a pair of real symmetric positive matrices M = mij and K = kij which act on
the vector space V ∼= Rn in which x lives. For the double pendulum, the equations for small
oscillations are

ml2
(

2 1
1 1

)(
θ̈1

θ̈2

)
= −mgl

(
2 0
0 1

)(
θ1

θ2

)
. (370)
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• Linearity of the equations means the space of solutions x(t) is a linear space, we can add and
rescale solutions to get other solutions. One checks that this system of ODEs admits a conserved
energy E = 1

2 ẋ
tMẋ+ 1

2x
tKx . The momentum conjugate to xi is pi = mij ẋ

j . If we denote the
matrix elements of the inverse of M by mij , then the Hamiltonian is

H =
1

2
mijpipj +

1

2
kijx

ixj . (371)

• To find the vector function of time xi(t), we try to separate the time and vectorial dependences
by making the ansatz xi(t) = aif(t) where ai ∈ Rn is a constant vector and f an ordinary real
function of time. One hopes there are sufficiently many separable solutions to span the space of
all solutions. Then

(Ma)f̈ = −(Ka)f or (Ma)(f̈/f) = −Ka (372)

The rhs is time-independent while the lhs depends on time via the scalar f̈/f . The only way
for this equation to hold at all times is for f̈/f to be a negative28 constant, say −ω2 . Thus
f̈ = −ω2f and so f = A cosωt + B sinωt . Sometimes one simply says f ∼ eiωt with the
understanding that the real and imaginary parts are the linearly independent real solutions. a
must then satisfy a linear equation which is reminiscent of an eigenvalue problem

(−ω2M +K)a = 0. (373)

For non-trivial solutions a to exist, the matrix of coefficients must have zero determinant, leading
to the characteristic equation for ω2

det(−ω2M +K) = 0. (374)

This equation in general has n roots ω2
α (including possibly repeated roots), which must all

be real and positive if K,M are positive matrices, as noted above. Physically, the roots must
be positive to ensure that x(t) = <aeiωt,=aeiωt do not grow or decay exponentially with time,
which would violate conservation of energy H , as well as stability of the static solution q0 .
Alternatively, we could multiply the linear equation by M−1 , to get a standard eigenvalue
equation29 (

M−1K
)
a = ω2a. (375)

Note that the product of two positive matrices need not be positive, it need not even be sym-
metric30. But despite this, our earlier argument tells us that if M,K are positive, then the n
eigenvalues ω2

α = 〈a|M |a〉
〈a|K|a〉 are real and positive.

• For small oscillations of a double pendulum,

M−1K =
1

ml2

(
1 −1
−1 2

)
mgl

(
2 0
0 1

)
=
g

l

(
2 −1
−2 2

)
. (376)

28That the constant must be negative is seen by multiplying by the transpose of a from the left and using the
fact that both M and K are positive matrices so that their diagonal matrix elements 〈a|K|a〉, 〈a|M |a〉 in the
‘state’ a must be positive.

29Assuming M is positive definite, M−1 is positive definite as well, as is seen by going to the basis in which
M is diagonal. M−1 is also diagonal in this basis, with positive eigenvalues equal to the reciprocals of those of
M .

30However, the product of two positive matrices that commute is again positive, check this!
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Notice that M−1K is not a symmetric matrix, and that M and K do not commute in this example.

Yet, M−1K has positive eigenvalues g
l (2±

√
2).

• The corresponding n eigenvectors are denoted a(α) . Since M−1K may not be symmetric,
the a(α) may not be orthogonal (as we found for the double pendulum. The a(α) can be chosen
orthogonal if M and K commute so that M−1K is symmetric). Thus we have n normal modes
of small oscillations with eigenfrequencies ωα for α = 1, 2, . . .

ξ(α)(t) = a(α)

[
c

(α)
1 cos(ωαt) + c

(α)
2 sin(ωαt)

]
(no sum on α). (377)

Physically, the vector a(α) for each α is a direction in the tangent space to the configuration
space at the equilibrium point q0 . The corresponding normal mode is an oscillation in that

direction. c
(α)
1,2 are constants of integration. In terms of the normal modes, the equations of

motion decouple for each eigenfrequency,

ξ̈(α)(t) = −ω2
α ξ(α)(t) (no sum on α). (378)

The general solution of the equations Mẍ+Kx = 0 for small vibrations is a linear combination
of normal modes

x(t) =
∑
α

ξ(α)(t) =
n∑

α=1

a(α)

[
c

(α)
1 cos(ωαt) + c

(α)
2 sin(ωαt)

]
. (379)

• A negative eigenvalue ω2 (i.e., imaginary ω ) would imply that the static solution is, in
general, exponentially unstable in the linear approximation. Small perturbations would grow
exponentially (or decay) with time ξ ∼ a(c1e

|ω|t + c2e
−|ω|t), and the energy H = 1

2mij ẋ
iẋj +

1
2kijx

ixj would not be conserved. This happens if we were perturbing around a static solution
q0 that is not a local minimum, but a local maximum or saddle point of the potential. Of course,
this cannot happen if both M and K are positive matrices. Illustrate with a diagram.

• A ‘zero mode’ corresponding to a zero eigenvalue ω2 = 0 could grow linearly with time
ξ ∼ a(c1 + c2t) since f̈ = 0. In this case, the static solution is said to be marginally unstable
within the linear approximation. This happens, for instance, if the static solution q0 is at a
degenerate minimum of the potential, such as at one of the minima of the Mexican hat potential
U(x, y) = (x2 + y2 − 1)2 . The corresponding zero mode points in the direction in which the
potential is flat, i.e., along the valley of the Mexican hat potential. Illustrate with a diagram.

• Remark: Another way to reduce the equation (−Mω2 +K)a = 0 to a standard eigenvalue
problem is given here, emphasizing concepts from tensor algebra. We are given a vector space V
along with a pair of covariant symmetric positive tensors M = mij and K = kij . We may regard
M as defining a positive definite inner product on V . Let ei denote the standard basis vectors
for V with components (ei)

j = δji . Explicitly, e1 = (1000 · · · )t, e2 = (0100 · · · )t etc. The inner
products of basis vectors are (ei, ej) = mij . For a general pair of vectors u = uiei, v = vjej ,
their inner product is (u, v) = miju

ivj with (u, u) > 0 for all u 6= 0, since the kinetic energy
is positive. Then there is a basis for V consisting of vectors fi which are orthonormal with
respect to this inner product (fi, fj) = δij . The fi basis vectors are some linear combinations
of the ej , fi = T α

i eα , so

δij = (fi, fj) = (T α
i eα, T

β
j eβ) = T α

i T
β
j (eα, eβ) = T α

i T
β
j mαβ (380)
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In other words, in the standard basis eα , M is the matrix with entries mαβ , while in the fi
basis, M is the identity matrix. Note that being a covariant tensor of rank two, M transforms
via ‘TT ’ (rather than ‘T−1T ’), which is not a similarity transformation31, and in particular
does not preserve the eigenvalues of mαβ . In the new basis, M is the identity, all of whose
eigenvalues are equal to one. K also transforms as a covariant symmetric tensor to

k̃ij = T α
i T

β
j kαβ. (381)

Finally, the vector a = aiei also has new components in the f basis. Indeed

fi = T j
i ej ⇒ ej = (T−1) ij fi ⇒ a = ãifi where ãi = (T−1) ij a

j (382)

So the linear equation for a is transformed from

(−mijω
2 + kij)a

j = 0 to (−δijω2 + k̃ij)ã
j = 0 or k̃ij ã

j = −ω2ãj . (383)

which is now a standard eigenvalue problem for a matrix k̃ij .

6.3 Small perturbations around a periodic solution

• In the last 2 sections we studied small oscillations around a static solution. This is what results
when the static solution is stable to small perturbations. More generally, we could consider a
time dependent solution (may be even an approximate solution) and ask about its stability and
perturbations around it. Consider a system with Lagrangian L = 1

2mij q̇
iq̇j − V (q) where for

simplicity we take mij constant. For simplicity, let us suppose q0(t) is a periodic solution with
period T :

mij q̈
j
0 +

∂V (q0)

∂qi
= 0 with q0(t+ T ) = q0(t) ∀ t. (384)

This is reasonably common in potential wells or planetary orbits etc. We seek a nearby solution
of the form qi(t) = qi0(t) + xi(t) where xi is a small perturbation, |x(t)| � |q0(t)| . Expanding
in x we get

mij(q̈
j
0 + ẍj) +

∂V (q0(t))

∂qi
+
∂2V (q0(t))

∂qi∂qj
xj +O(x2) = 0. (385)

We get a system of 2nd order homogeneous linear ODEs with periodic coefficients for the per-
turbation x(t):

mij ẍ
j + kij(t)x

j = 0 where kij(t) =
∂2V (q0(t))

∂qi∂qj
and kij(t+ T ) = kij(t). (386)

The time-dependent spring ‘constants’ kij(t) inherit the periodicity of the unperturbed solution
q0(t), since the hessian of the potential is evaluated at q0(t). The simplest case is that of one
degree of freedom

m ẍ(t) + k(t) x(t) = 0. (387)

An interesting case is k(t) = a+ b cos t , which leads to Mathieu’s equation.

• Such ODEs were studied by Hill in the context of solar perturbations to the moon’s periodic
motion around the earth and also by Floquet. For the earth-moon-sun system, q0(t) is an

31On the other hand, a mixed tensor with one upper and one lower index hij transforms via T−1T .
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approximate periodic solution (when the sun’s effect is ignored), namely the Earth and moon
going round their common center of mass in a nearly circular orbit with a period of about T = 1
month. q0(t) + x(t) is the perturbed lunar orbit when effects of the sun’s gravity are included
to first order.

• An equation of this sort (for n = 1) arises also in quantum mechanics when considering the
time-independent Schrödinger eigenvalue problem for a particle moving in one dimension subject
to a periodic potential V (x), such as that presented by an ionic crystal to an electron. Here one
considers a 1 dimensional crystal with spacing between adjacent ions equal to a . The crystal
as a whole is of length L , but we assume that L is so large that the effects of the edges of the
crystal can be ignored. This is often implemented via periodic boundary conditions on the wave
function (as would be the case if the ions are arranged on a circle). To go from the classical
mechanics problem to the QM one, x is replaced by the wave function ψ and time t is replaced
by the spatial coordinate x and the spring ‘constant’ k(t) by the potential E−V (x). Newton’s
equation is replaced by the Schrödinger eigenvalue problem, a class of solutions of which are
called Bloch wave functions:

− ~2

2m
ψ′′(x) + (V (x)− E)ψ(x) = 0. (388)

• A qualitative feature of an ODE with periodic coefficients is that the solutions need not have
the same periodicity, nor even be periodic at all. In fact, we are familiar with this phenomenon
from the simplest such equation for a harmonic oscillator. mẍ + kx = 0 describes oscillations
around a static equilibrium point at x = 0. Here the coefficients are constant, and therefore
periodic with period 0. Nevertheless, solutions are not constant functions, they are periodic
with period T = 2π/ω where ω =

√
k/m . Loosely, this may be regarded as an example of

‘spontaneous symmetry breaking’. A ‘symmetry’ of the equation of motion, (i.e. periodicity of
coefficients with period 0) is not realized in some/all solutions.

6.3.1 Formulation as a system of first order equations

• In the simplest case of one degree of freedom, the equation for small oscillations around a
periodic solution takes the form mẍ+k(t)x(t) = 0 with k(t+T ) = k(t) for all t . It is convenient
to rewrite this as a pair of first order equations on phase space

d

dt

(
x(t)
p(t)

)
=

(
0 m−1

−k(t) 0

)(
x(t)
p(t)

)
and denote A(t) =

(
0 m−1

−k(t) 0

)
. (389)

A(t) is periodic with period T . These equations follow from the (explicitly time-dependent)

hamiltonian H = p2

2m + 1
2k(t)x2 . Let ψ(t) = (x(t), p(t))t denote the instantaneous ‘state vector’

of the system. Then the equation takes the form ψ̇(t) = A(t)ψ(t). Notice the formal similarity
of ψ̇ = Aψ with the time-dependent Schrödinger equation i~ψ̇ = H(t)ψ . Unlike the hermitian
H(t) in quantum mechanics, here A(t) is not hermitian, but traceless. This has interesting
consequences, as we shall see.

• For n degrees of freedom, the equation mij ẍ
j + kijx

j = 0 may similarly be formulated as a
first order system. We first define the momenta pi = mij ẋ

j . Then

ẋi = (m−1)ilpl and ṗj = −kjkxk ⇒ d

dt

(
xi

pj

)
=

(
0 (m−1)il

−kjk(t) 0

)(
xk

pl

)
. (390)
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We see that the 2n × 2n matrix A(t) =

(
0 m−1

−k 0

)
is again traceless. These equations for

small oscillations again follow from an explicitly time-dependent hamiltonian

H(x, p, t) =
1

2
(m−1)ilpipl +

1

2
kjk(t) x

jxk. (391)

As before, we define the phase space ‘state vector’ ψ(t) = (xi, pj)
t , in terms of which ψ̇(t) =

A(t)ψ(t). Here too, A(t+ T ) = A(t) inherits the periodicity of the solution q0 .

6.3.2 Time evolution matrix

Given an initial state ψ(0), the equation ψ̇(t) = A(t)ψ(t) determines the state ψ(t) at any
subsequent time. For instance if t is small, then

ψ(t) = (1 +A(0) t)ψ(0) +O(t2). (392)

To get the state after a longer time we could compose time evolution over several short times.

ψ(t) = lim
n→∞

(1 +A((n− 1)t/n))(1 +A((n− 2)t/n)) . . . (1 +A(t/n))(1 +A(0))ψ(0) (393)

We will give an alternate formula shortly, but for now we notice that since the equation is linear,
ψ(t) must depend linearly on the initial state, i.e.,

ψ(t) =

(
x(t)
p(t)

)
= U(t, 0)

(
x(0)
p(0)

)
= U(t, 0)ψ(0), (394)

where U(t, 0) is a 2× 2 time evolution matrix.

• For n degrees of freedom we again have ψ̇ = A(t)ψ(t) where the 2n × 2n matrix A(t) =(
0 m−1

−k 0

)
is block off diagonal and traceless and we may write ψ(t) = U(t, 0)ψ(0). U(t, 0)

satisfies the same 1st order ODE as ψ(t)

AU(t, 0)ψ(0) = ψ̇ = U̇(t, 0)ψ(0) ∀ ψ(0) ⇒ U̇(t, 0) = A(t)U(t, 0). (395)

with the initial condition U(0, 0) = I . Of course, there is nothing special about t = 0 and one
defines

ψ(t) = U(t, t′)ψ(t′) for any t ≥ t′. (396)

It is convenient to combine the ODE and initial condition into an integral equation

U(t, 0) = I +

∫ t

0
A(t′)U(t′, 0) dt′ (397)

Notice that this is similar to the equation for the time evolution operator in quantum mechanics
i~U̇(t, 0) = H(t)U(t, 0) where H(t) is the hamiltonian. As in QM, from its definition (ψ(t) =
U(t, t′)ψ(t′)), U satisfies a composition law or reproducing property (alternatively, one checks
that both the LHS and RHS satisfy the same differential equation d

dtU = A(t)U , and initial
condition.)

U(t, t′′) = U(t, t′)U(t′, t′′) for any t ≥ t′ ≥ t′′. (398)
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• However, there are some differences as well. Unlike the hermitian hamiltonian H(t) in QM,
the matrix A(t) is not hermitian in general. However, it is traceless. Using this, one may
show that unlike in QM where U(t) is unitary, here U(t) is unimodular (i.e. of determinant
one) under time evolution. Physically, we know that hamiltonian evolution, (even by a time-
dependent hamiltonian) defines a canonical transformation. The time evolution matrix defines
linear CTs on phase space. By Liouville’s theorem, these CTs must preserve the volume element
on phase space, which means U must have unit determinant. (For one degree of freedom, it
is shown in the problem set that a linear canonical transformation is an element of the group
SL2(R)).

• Proving detU = 1 is easy when A is time-independent. Then U(t, 0) = etA and log detU =
tr log etA = tr (tA) = 0. When A is time-dependent, we have for short times,

U(t, 0) = I +

∫ t

0
A(t′)dt′ +O(t2). (399)

Using det(I + εA) ≈ 1 + ε tr A for small ε we get

detU(t, 0) ≈ 1 +

∫ t

0
tr A(t′)dt′ = 1 +O(t2). (400)

We see that infinitesimal time-evolution preserves the unimodularity of U . For longer times, we
write U(t, t0) as a product of several short-time evolutions and let the time-step go to zero:

U(t, t0) = U(t, tn−1)U(tn−1, tn−2) · · ·U(t2, t1)U(t1, t0) (401)

where, say ti+1 − ti = ∆t = (t− t0)/n is constant. Then defining tn ≡ t , which is held fixed,

detU(t, t0) =
n∏
i=1

detU(ti+1, ti) =
n∏
i=1

(1 +O(∆t)2)→ 1 as n→∞. (402)

The unimodularity of U(t, t′) can also be established using the identity log detU = tr logU .
One first shows that d

dt log detU(t, 0) = tr U̇U−1 = tr A = 0 and then uses the initial condition
detU(0, 0) = 1 to conclude that detU(t, 0) = 1.

• By iterating the above integral equation, we get a series for the time-evolution operator

U(t, 0) = I +

∫ t

0
dt′ A(t′) +

∫ t

0
dt′A(t′)

∫ t′

0
dt′′ A(t′′) + · · ·

= 1 +
∞∑
n=1

∫∫∫
t≥t1≥t2≥···tn≥0

dt1 · · · dtn A(t1)A(t2) · · ·A(tn)

=

∞∑
n=0

1

n!

∫ t

0
dt1 · · ·

∫ t

0
dtnP(A(t1) · · ·A(tn)) ≡ P exp

∫ t

0
A(t′)dt′ (403)

In the last line we extended the integrals from simplices t ≥ t1 ≥ · · · ≥ tn ≥ 0 to the full
hypercube [0, t]n by dividing by n! , but made sure the matrices A(ti) in the product are
ordered with ‘younger ones to the right’. This expression is called the time- or path-ordered
exponential, denoted symbolically by P exp. Note that in general, it is not the exponential of∫
A(s)ds , though it reduces to this if A is time independent or if the matrices A(s) commute at
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distinct times. If A(t) is uniformly bounded, i.e., if the largest eigenvalue of A is bounded above
by some constant Λ for all times in the interval [0, t] , then the norm of this sum of operators is
dominated by a constant multiple of the exponential series

∑
(Λt)n/n! = eΛt , and is therefore

absolutely convergent. In general

U(t, t′) =
∞∑
n=0

1

n!

∫ t′

t
dt1 · · ·

∫ t′

t
dtnP (A(t1) · · ·A(tn)) ≡ P exp

∫ t′

t
A(s) ds. (404)

• A virtue of U(t, t′) is that its columns are solutions of the original equation ψ̇ = A(t)ψ(t),
as is easily seen from U̇(t, t′) = A(t)U(t). Since detU 6= 0, the columns of U are a complete
set of 2n linearly independent solutions to the equation for small oscillations. So U is called
the fundamental matrix solution. Every solution of ψ̇ = A(t)ψ is a linear combination of the
columns of U .

6.3.3 Monodromy matrix

• So far, we have not used the T -periodicity of A(t). We are especially interested in the behavior
of U after one period, i.e., U(t+ T, t). The reproducing formula says in particular that

U(t+ T, 0) = U(t+ T, t)U(t, 0). (405)

The operator U(t+ T, t) advances a solution by one period of the unperturbed q0

ψ(t+ T ) = U(t+ T, t)ψ(t). (406)

What is more, by periodicity of A , it follows that U(t+T, t) is independent of t , since the above
time-ordered exponential series for U(t+T, t) only involves integrals of A over a complete period.
So we may unambiguously denote U(t + T, t) by M(T ), which is also called the monodromy
matrix

M(T ) = U(t+ T, t) = P exp

∫ T

0
A(s) ds. (407)

Being a special case of the time evolution operator, detM = 1. So ψ(t+T ) = Mψ(t). In other
words, the solution need not be periodic, but is periodic up to multiplication by a unimodular
matrix. This is one of the main results of Floquet’s theory. It finds application in Bloch’s
analysis of the energy eigenfunctions of an electron in a 1D periodic potential, which underpins
the band theory of electrons in a crystal.

6.3.4 Stability of periodic solution

• Long-term stability of the original periodic solution q0(t) is related to the spectrum of M .
After one period T of the unperturbed motion, the initial perturbation ψ(0) becomes ψ(T ) =
Mψ(0). After n time periods, ψ(nT ) = Mnψ(0). For long-term stability, we would want
ψ(nT ) to remain bounded as n → ∞ for any choice of ψ(0). This puts restrictions on the
monodromy matrix M . M is a real matrix with unit determinant, it defines a finite linear
canonical transformation. To determine M explicitly for given A(t) is usually quite hard (the
time-ordered exponential gives a series for M ), but a lot can be said about the qualitative nature
of the motion, if the spectrum of M is known.
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• Let us consider the simplest example of one degree of freedom, where M is a 2 × 2 matrix
with product of eigenvalues λ1λ2 = 1. There are various cases to consider, and the analysis is
simplest in a basis in which M is either diagonal or takes a canonical form.

• If the eigenvalues are real and unequal, then M is diagonalizable via a similarity transfor-

mation S−1MS = D where D =

(
λ 0
0 λ−1

)
. The eigenvalues must both have the same sign.

One of the eigenvalues is necessarily larger than 1 in magnitude, say 1/λ . An initial state ψ(0)
that has a component in the direction of the corresponding eigenvector will grow exponentially

with time since Dn =

(
λn 0
0 λ−n

)
→
(

0 0
0 ±∞

)
as n → ∞ . So if the monodromy matrix has

real and distinct eigenvalues, the periodic solution q0(t) is in general unstable over long times.

• If the eigenvalues are real and equal λ1 = λ2 = 1, or λ1 = λ2 = −1 then M in general

cannot be diagonalized, though it is similar to a Jordan matrix S−1MS = J =

(
1 c
0 1

)
or

J =

(
−1 c
0 −1

)
and Jn =

(
1 nc
0 1

)
or Jn = (−1)n

(
1 −nc
0 1

)
. Working in the Jordan basis,

we see that a perturbation that initially has a component in the second direction, grows linearly
with time (t = nT ) if c 6= 0. So if M 6= ±I has coincident real eigenvalues, then the periodic
solution is linearly unstable in general. It is stable if M = ±I .

• If M has a non-real eigenvalue, then both eigenvalues must be non-real and complex con-
jugates of each other (λ 6= λ̄), since the characteristic equation has real coefficients. Moreover
|λ|2 = λλ̄ = detM = 1, so the eigenvalues have unit absolute values. Let λ = eiθ = a+ ib with
a = <λ, b = =λ and a2 + b2 = 1. Since it has distinct eigenvalues, M may be diagonalized by a

non-real similarity transformation S−1MS = D =

(
eiθ 0
0 e−iθ

)
and Dn =

(
einθ 0

0 e−inθ

)
. It is

clear that the matrix elements do not grow in magnitude, so we expect stability. However, x, p
are real, and M cannot be diagonalized by a real similarity transformation. However, it may be

brought by a similarity transformation to the real Jordan form J =

(
a b
−b a

)
with a2 + b2 = 1.

So we may write a = cos θ, b = sin θ . Then J =

(
cos θ sin θ
− sin θ cos θ

)
is just a rotation in the phase

plane and Jn =

(
cosnθ sinnθ
− sinnθ cosnθ

)
is also a rotation. It is clear that perturbations do not grow

in size if the eigenvalues of M are non-real. If θ = 2π(p/q) is a rational multiple of 2π (with
the g.c.d. (p, q) = 1), then the perturbation ψ(t) is periodic with period qT .

• Thus the eigenvalues of the monodromy matrix determine the stability of the unperturbed
periodic trajectory q0(t). If the eigenvalues are non-real or M = ±I , we have stability, per-
turbations remain bounded. Otherwise, if the eigenvalues are real and equal, then generic
perturbations grow linearly. If the eigenvalues are real and unequal then generic perturbations
grow exponentially.
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6.4 Chaotic oscillations of a double pendulum

6.4.1 Poincare sections for double pendulum

• The phase space of the double pendulum is 4-dimensional, with coordinates θ1 ∈ S1, θ2 ∈
S1, p1, p2 ∈ R . The phase space is the cartesian product of a torus and a plane T2 × R2 . It is
difficult to visualize trajectories in this space. Of course, we know energy is conserved, so the
trajectory must lie on a constant energy 3D sub-manifold of phase space determined by initial
conditions.

• The constant energy H = E sub-manifold of phase space is a compact (bounded and closed)
3D manifold. θ1,2 ∈ S1 are always bounded, and on a constant energy sub-manifold, |p1| and
|p2| are also bounded. To see this, we first notice that the potential energy is bounded both
above and below −3mgl ≤ V ≤ 3mgl . Thus for fixed E , the kinetic energy is also bounded
both above and below: 0 ≤ max(0, E − 3mgl) ≤ T ≤ E + 3mgl . Now one uses the fact that T
is bounded above to argue that |p1| and |p2| are also bounded above

|T | = T =
1

2ml2(1 + s2
12)

[
p2

1 + 2p2
2 − 2c12p1p2

]
≥ 1

4ml2
[
p2

1 + 2p2
2 − 2|p1||p2|

]
(408)

Here we replaced (1 + s2
12) by the larger quantity 2 and subtracted the larger quantity 2|p1||p2|

instead of 2p1p2c12 . This may be expressed as a sum of two squares

E + 3mgl ≥ T ≥ 1

4ml2
[
(|p1| − |p2|)2 + p2

2

]
. (409)

Therefore |p2| is bounded above and so is |p1| − |p2| . It follows that both |p1| and |p2| are
bounded above. Thus any constant energy submanifold occupies a bounded region of phase
space and the trajectory explores it.

• However, it is still difficult to plot or visualize trajectories in a 3D manifold. A Poincare
section is a 2D slice through a constant energy sub-manifold. For example, we could choose a
Poincare section corresponding to θ1 = 0, i.e., focus on those instants when the first bob hangs
vertically downward. This section intersects the constant energy manifold on a 2D surface that
may be parametrized by θ2, p2 (very roughly, the ‘phase space’ of the second bob). The fourth
coordinate p1 at any point on this section is fixed by the condition H(θ1 = 0, θ2, p1, p2) = E .
Now each point (θ2, p2 ) where the trajectory intersects the Poincare section, is marked with a
dot. Thus, for fixed initial conditions (and energy) one gets a picture of the set of points on the
Poincare section where the trajectory intersected it.

• A Poincare section can convey a lot of qualitative information on the nature of the dynamics.
For instance, if there is a second conserved quantity Q , independent of the energy H , then
the trajectory must lie on the 2D surface on which the constant H and constant Q manifolds
intersect. This 2D surface generically intersects the Poincare slice along a 1D curve. So if there
is a 2nd conserved quantity, we expect the points on a Poincare section to lie along a 1D curve
(or union of curves). If Q is ‘nearly conserved’, then we would expect the points in a Poincare
section to be concentrated in a neighborhood of 1D curves. If there is no additional conserved
quantity, then points on the Poincare slice are expected to fill out 2D regions rather than be
concentrated along curves. In all cases, since the constant energy hyper surface is compact, the
points in a Poincare section must lie in a bounded region.
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Figure 5: Poincare section: points where a trajectory intersects the 2D Poincare slice are marked.
These two figures are from http://en.wikipedia.org/wiki/Poincare_map and http://www.unice.

fr/DeptPhys/sem6/2011-2012/PagesWeb/PT/Pendule/En/more3.html

(a) 588 points for t < 1000 on θ1 -p1 plane
when θ2 = 0

(b) 588 points for t < 1000 on θ2 -p2 plane
when θ1 = 0

Figure 6: Poincare sections for double pendulum in small angle approximation: m = 1, l =
1, g = 1, θ1(0) = π/15, θ2(0) = −π/15, θ̇1(0) = θ̇2(0) = 0, E = 0.0658. On the left, the lower
oval corresponds to θ̇2 > 0 and the upper oval to θ̇2 < 0. The points lie on a curve indicating
the presence of a second conserved quantity and absence of chaos.

• Small oscillations of a double pendulum: Numerically obtained points on Poincare
sections are shown in fig. 6.4.1. The points on the Poincare section lie along 1d curves. This
indicates there is a second conserved quantity other than total energy. Indeed, we already
found two conserved quantities for small oscillations, the energies of the two normal modes:

E+ =
1

2
ml2

[
ξ̇2

+ + ω2
+ξ

2
+

]
and E− =

1

2
ml2

[
ξ̇2
− + ω2

−ξ
2
−

]
. (410)

The conserved total energy E = 2λ+E+ + 2λ−E− is a weighted sum of these two conserved
quantities (λ± = 2 ±

√
2). Though the motion is not periodic (only quasi-periodic), small

oscillations of our double pendulum are fairly regular, there is no sign of chaos.

• As energy is increased and oscillations become larger, E± are no longer exactly conserved,
though total energy is always conserved. For relatively low energies, Poincare sections are still
concentrated near deformed 1D curves indicating that E± are approximately conserved.

• Onset of chaos: As the energy is increased to intermediate values, the motion becomes
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(a) 921 points on θ1 -p1 plane when θ2 = 0 (b) 921 points on θ2 -p2 plane when θ1 = 0

Figure 7: Double pendulum m = 1, l = 1, g = .5, θ1(0) = π/3, θ2(0) = −π/3, θ̇1(0) = θ̇2(0) = 0,
E = −0.75

increasingly irregular and chaotic. Energy is the lone conserved quantity, points on Poincare
sections fill up 2D regions. This is shown in the figures of Poincare sections for various ini-
tial conditions and energies. This onset of chaos can be studied in detail both analytically
and numerically and forms an interesting branch of physics. One first studies the immediate
neighborhood of integrable dynamics (small departure from small oscillations) using perturba-
tion theory. This leads to the concept of invariant tori (which is a replacement for conserved
quantities even when the latter cease to exist). The invariant tori are invariant manifolds for
the dynamics (trajectories stay on them) which separate regions of possibly chaotic motion (‘is-
lands of regularity separating regions of chaos’). As we move farther away from integrability,
the invariant tori dissolve. For the double pendulum, the last invariant torus to dissolve is a
‘golden’ torus (related to the golden ratio). Eventually the trajectories can fill up the whole
of the constant energy hyper-surface and the motion can become ergodic (trajectories spending
equal times in equal volume regions of the constant energy submanifold). This passage from
integrability to chaos is the subject of the Kolmogorov-Arnold-Moser (KAM) theory.
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Figure 8: Curves traced out by two bobs of a double pendulum over a significant length of time. The
bobs both move on the plane of the paper. The pendulum is suspended from the point (0, 0). Left:
Relatively low energy oscillation showing some regularity. Right: Intermediate energy oscillation showing
onset of chaos. The ‘upper’ bob is constrained to lie on the ‘upper’ circle of radius l = 1 centered at
the pivot (located at the origin), though its trajectory along this circle can be quite irregular. The curve
traced out by the ‘lower’ bob is much more complicated.

(a) 609 points on θ1 -p1 plane when θ2 = 0 (b) 610 points on θ2 -p2 plane when θ1 =
0

Figure 9: Double pendulum m = 1, l = 1, g = .5, θ1(0) = 0, θ2(0) = π/2, θ̇1(0) = θ̇2(0) = 0, E = −1.
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(a) 698 points on θ1 -p1 plane when θ2 = 0 (b) 972 points on θ2 -p2 plane when θ1 =
0

Figure 10: Double pendulum m = 1, l = 1, g = .5, θ1(0) = 0, θ2(0) = 2π/3, θ̇1(0) = θ̇2(0) = 0,
E = −0.75.

(a) 681 points on θ1 -p1 plane when θ2 = 0 (b) 810 points on θ2 -p2 plane when θ1 =
0

Figure 11: Double pendulum m = 1, l = 1, g = .5, θ1(0) = 0, θ2(0) = 3π/4, θ̇1(0) = θ̇2(0) = 0,
E = −0.6464.

(a) 486 points on θ1 -p1 plane when θ2 = 0 (b) 497 points on θ2 -p2 plane when θ1 =
0

Figure 12: Double pendulum m = 1, l = 1, g = .5, θ1(0) = 0, θ2(0) = 4π/5, θ̇1(0) = θ̇2(0) = 0,
E = −0.595.
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(a) 1072 pts on θ1 -p1 plane, θ2 = 0 (b) 1072 pts on θ2 -p2 plane, θ1 = 0

(c) 1125 pts on θ1 -p1 plane, θ2 = 0 (d) 1196 pts on θ2 -p2 plane, θ1 = 0

Figure 13: Double pendulum m = 1, l = 1, g = .5, θ2(0) = 0, θ̇1(0) = θ̇2(0) = 0. (a) and (b):
θ1(0) = π/3, E = −1. (c) and (d): θ1(0) = 4π/9, E = −0.6736.

(a) 729 points on θ1 -p1 plane when θ2 = 0 (b) 854 points on θ2 -p2 plane when θ1 = 0

Figure 14: Double pendulum m = 1, l = 1, g = .5, θ1(0) = π/2, θ2(0) = 0, θ̇1(0) = θ̇2(0) = 0, E = −0.5.
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• At very high energies, the Poincare sections again become simpler and are concentrated
along 1D curves. A new conserved quantity emerges. Most of the energy is kinetic since the
gravitational potential energy is bounded between ±3mgl , and is negligible. We may ignore
the gravitational force, so there is no external torque. Total angular momentum is conserved as
E →∞ :

L = L1 + L2 = ml2
[
2θ̇1 + θ̇2 + 2c12(θ̇1 + θ̇2)

]
ẑ. (411)

As E →∞ , the two bobs go round in nearly uniform circular motion: dynamics is again regular
at high energies!

6.4.2 Sensitivity to initial conditions

• A hallmark of chaos is sensitivity to initial conditions. This means that two trajectories with
slightly differing initial conditions could get quite far apart and display qualitatively different
behavior. This feature makes chaotic systems behave quite unpredictably. The double pendulum
displays sensitive dependence on initial conditions for energies that are neither too high nor too
low. We illustrate this in the following figures which show various dynamical variables like
angles/positions/momenta of the bobs as a function of time (obtained numerically) for two
nearby initial conditions. The parameters used are m = l = 1, g = .5. The initial conditions
for the blue trajectory are θ1(0) = π/2, θ2(0) = π, θ̇1(0) = θ̇2(0) = 0 while those for the red
trajectory is θ1(0) = π/2 + δ where δ = 0.02. This corresponds to about a 1% change in
initial conditions. We can see from the plots that the trajectories do not remain nearby as time
progresses. The shaded region encloses the difference between the dynamical variables and it is
sometimes seen to be as large as it can be.

(a) θ1(t) for two nearby IC (b) θ2(t) for two nearby IC

Figure 15: Double pendulum: sensitivity to IC, deflection angles of bobs. Initial angles for red trajectory
are ∆IC = .02 more than for blue trajectory. Initial θ̇1, θ̇2 = 0. Natural time scale T = 2π

√
l/g = 8.9.

• Trajectories do not remain nearby with time. Shaded region encloses the difference between
angles. It is sometimes maximal (an odd multiple of π ).
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(a) x1(t) for two nearby IC (b) x2(t) for two nearby IC

Figure 16: Double pendulum: sensitivity to IC, horizontal displacements of bobs. Initial angles
for red trajectory are ∆IC = .02 more than for blue trajectory. Initial θ̇1, θ̇2 = 0. Natural time
scale T = 2π

√
l/g = 8.9.

(a) y1(t) for two nearby IC (b) y2(t) for two nearby IC

Figure 17: Double pendulum: sensitivity to IC, heights of bobs. Initial angles for red trajectory
are ∆IC = .02 more than for blue trajectory. Initial θ̇1, θ̇2 = 0. Natural time scale T =
2π
√
l/g = 8.9.
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(a) p1(t) for two nearby IC (b) p2(t) for two nearby IC

Figure 18: Double pendulum: sensitivity to IC, momenta of bobs. Initial angles for red trajectory
are ∆IC = .02 more than for blue trajectory. Initial θ̇1, θ̇2 = 0. Natural time scale T =
2π
√
l/g = 8.9.
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