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2 Formulations of quantum mechanics and time evolution operator

2.1 Schrödinger picture

• In the Schrödinger formulation of QM, the state of the system is represented by a vector in
a complex vector space (wavefunction) |ψ〉 that evolves in time via the Schrödinger equation
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(SE). For a particle in a potential V , we have

i~
∂|ψ〉
∂t

= H|ψ〉 where H = −∇2 + V (r) (1)

is the Hamiltonian operator. However, the wave function itself is not measured. Rather, when
we measure an observable A in a normalized state ψ , we get one of its eigenvalues a with a
probability given by the square of the inner product (projection) |〈φa|ψ〉|2 . The system collapses
to a (normalized) eigenstate φa where Aφa = aφa . If we make several copies of the system in the
same state ψ(t), and measure A in each of the copies, the average value obtained is 〈ψ(t)|A|ψ(t)〉

2.2 Time evolution operator

• Given an initial state ψ(t0), the SE determines the state ψ(t) at any later time. For a
time-independent Hamiltonian we may write down the solution by inspection

ψ(t) = e−iH(t−t0)/~ψ(0). (2)

For such a Hamiltonian, the operator U(t, t0) = e−iH(t−t0)/~ is called the time-evolution operator
as it evolves the state forward in time. It is unitary (UU † = U †U = I) since H is hermitian
and U may be expanded in an exponential series:

U(t, t0) =

∞∑
n=0

(
1

i~

)n (t− t0)nHn

n!
. (3)

Interestingly, U satisfies the SE. In fact, even if H is time-dependent, we may use the linearity
of the SE to write

ψ(t) = U(t, t0)ψ(t0), (4)

where for consistency U must satisfy the initial condition U(t0, t0) = I . Putting this in the SE,
and requiring it to hold for any initial state leads us to an evolution equation for U :

i~ ∂tU(t, t0) = HU(t, t0) (5)

• Reproducing property/composition law U(t, t0) satisfies a composition law which is
simply the statement that one can evolve directly from t0 to t2 > t0 or in two steps from
t0 → t1 and then from t1 → t2 . Thus, composing two time evolution operators whose initial
and final times coincide, reproduces another time evolution operator:

U(t2, t0) = U(t2, t1)U(t1, t0) for t2 ≥ t1 ≥ t0. (6)

• In the case of a time independent hamiltonian the composition law says that

e−iH(t−t0)/~ = e−iH(t−t1)/~e−iH(t1−t0)/~ (7)

In this case, U(t, t0) is only a function of the time difference and we may denote the reduced
time-evolution operator Ũ(t) = e−iHt/~ . Then we have Ũ(t + s) = Ũ(t)Ũ(s). In this case, the
composition law is commutative Ũ(t)Ũ(s) = Ũ(s)Ũ(t). Ũ(0) = I and Ũ(−t)Ũ(t) = I defines
the inverse with U(−t) = U(t)† . Thus the reduced time evolution operators of a system with
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time-independent Hamiltonian may be used to obtain a unitary representation of the abelian
group of rotations U(1).

• For a time-dependent Hamiltonian, U(t, t′) is generally not just a function of the time dif-
ference as time-translation invariance is broken, so we cannot write U(t, t′) = Ũ(t − t′). The
U(t, t′) do not form a group since in general we cannot compose two of them to produce another
time-evolution operator, this is possible only if the final time of the right factor matches the
initial time of the left factor.

• The reproducing property is important. It can be used to define the time-evolution operator,
and thereby serve as an alternative to the Schrödinger equation. This is similar to how we can
define the exponential function of calculus by the functional equation f(t+s) = f(t)f(s) subject
to the initial condition f(0) = 1. There is a one parameter family of solutions to this functional
equation f(t) = eht parametrized by a ‘constant of integration/hamiltonian’ h = f ′(0).

2.3 Heisenberg picture

We may use the time evolution operator to go from the Schrödinger to the Heisenberg picture.
For simplicity, let us suppose that the Hamiltonian is time independent and focus on the physi-
cally measurable expectation value ψ(t)|A|ψ(t)〉 . We can express this expectation value at time
t in terms of the expectation value (of a different operator) at a reference time (say t = 0) using
the time-evolution operator U = e−iHt :

〈ψ(t)|A|ψ(t)〉 = 〈ψ(0)|eiHt/~Ae−iHt/~|ψ(0)〉 (8)

The operator Ah(t) = eiHt/~Ae−iHt/~ is called the operator A in the Heisenberg picture. The
original operator A (sometimes called As ) is said to be in the Schrodinger picture. Opera-
tors in the Heisenberg picture are related to those in the Schrodinger picture via a unitary
transformation Ah(t) = U †AU .

• Thus, to calculate the expected value of an observable A at time t in the Heisenberg picture,
we must evaluate 〈ψ(0)|Ah(t)|ψ(0)〉 . Since we only need ψ(0), we will say that the state of the
system in the Heisenberg picture is ψh = ψ(0). We can of course also write ψh = U †ψ(t).

• Thus, in the Heisenberg formulation, states do not change in time, but the operators change
with time. In the Schrödinger formulation, the state of the system evolves in time, while oper-
ators do not change with time (except if they are explicitly time-dependent).

• The Hamiltonian is the same in both pictures Hh = U †HU = H since the time evolution
operator U commutes with H . Irrespective of whether we work in the Schrödinger or Heisenberg
pictures, physically measurable quantities are the same. We have already seen that expectation
values are the same in both pictures 〈ψ(t)|A|ψ(t)〉 = 〈ψh|Ah|ψh〉 . More generally, the eigenvalues
of operators are the same in both pictures. This is because As = A and Ah = U †AU being
related by a unitary transformation, share the same spectrum.

• In addition, inner products (projections, whose squares give probabilities of measurements)
〈φ(t)|ψ(t)〉 = 〈φh|ψh〉 are also the same in both pictures. Here the system is in the Schrödinger
state ψ(t); we measure an observable, and get an eigenvalue corresponding to the eigenfunction
φ(t).

• States do not evolve in time, so what replaces the Schrödinger equation in the Heisenberg
picture? It is replaced by the Heisenberg equation of motion, which tells us how operators in the
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Heisenberg picture evolve. Suppose Ah(t) = U †AU where A is a Schrödinger picture operator
(that may have some explicit time dependence), then

i~
dAh
dt

= i~U̇ †AU + i~U †
∂A

∂t
U + i~U †AU̇ (9)

From U = e−iHt/~ and U † = e−Ht/~ we first observe that H,U,U † all commute with each other
(after all, each is a function of H and [H,H] = 0). We also find

i~U̇ = HU, and i~U̇ † = −HU. (10)

Thus the time evolution of Ah is given by the Heisenberg equation of motion

i~
dAh
dt

= i~
∂Ah
∂t

+ [Ah, H]. (11)

In particular, if A does not have any explicit time dependence, then i~Ȧh = [Ah, H] . Moreover,
if [A,H] = 0 (which is equivalent to [Ah, H] = 0), the Heisenberg operator Ah(t) is a constant
of motion. In other words, each of its matrix elements is time-independent.

• For a free particle, the Heisenberg picture momentum is a constant of motion ṗh = 0, since
[p, p2/2m] = 0.

2.4 Relation between classical and quantum mechanical formalisms

• There is a third way of formulating quantum mechanics, Feynman’s path integral approach.
To see how it fits in, let us recall the various formalisms of classical dynamics and mention their
quantum counterparts:

1. Time-dependent Hamilton-Jacobi equation for Hamilton’s principal function ∂tS+H(q, ∂S∂q ) =
0 or time-independent Hamilton-Jacobi equation for Hamilton’s characteristic function
H(q, ∂W∂q ) = E were S = W −Et ↔ Time-dependent i~∂tψ = Hψ and time-independent

Hψ = Eψ Schrödinger equations for wave function with ψ ∼ eiS/~ .

2. Hamilton’s 1st order equations of motion expressed in terms of Poisson brackets ḟ = {f,H}
↔ Heisenberg equations of motion i~ ˙̂

f = [f̂ , Ĥ] .

3. Euler-Lagrange equations for trajectory joining two configurations as extrema of action ↔
Position space path integral representation of quantum mechanical amplitude. Similarly,
the action principle for Hamilton’s equations ↔ phase space path integral.

4. Newtonian’s second law, generally non-linear 2nd order ODE ↔ Stochastic ODE with
quantum fluctuations entering through stochastic term in ODE.

It is noteworthy that the later formulations of classical mechanics were generalized to the
quantum theory somewhat earlier than the original Newtonian approach.
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3 The propagator: time evolution operator in the position basis

• The time evolution operator U(t, t0) can be expressed in any basis. For a time-independent
Hamiltonian, it is simplest in the energy basis. If H|n〉 = En|n〉 , then

〈n|U(t, 0)|m〉 = 〈n|e−iHt/~|m〉 = e−iEnt/~δnm. (12)

• To work our way to the path integral formulation, it is instructive to consider the time
evolution operator in a basis of position eigenstates |x′〉 . In the position basis, if we denote
〈x|U(t, t′)|x′〉 = U(xt;x′t′), then

ψ(x, t) = 〈x|ψ(t)〉 = 〈x|U(t, t′)|ψ(t′)〉 =

∫
dx′ 〈x|U(t, t′)|x′〉〈x′|ψ(t′)〉 =

∫
dx′U(xt;x′t′)ψ(x′, t′).

(13)
In a sense, U(x′t′;xt) propagates the initial wave function to the final wave function. So the
time evolution operator in the position basis is also called the propagator. In particular, if the
initial state was delta localized at the point x0 , then ψ(x, t) = U(xt;x0t0)1. So the matrix
elements of the propagator give the amplitude for finding the particle at x′ at time t′ given that
it was at location x0 at time t0 .

• The reproducing property can be expressed in any basis. For example, in the position basis
we get

〈x2|U(t2, t0)|x0〉 =

∫
dx1 〈x2|U(t2, t1)|x1〉〈x1|U(t1, t0)|x0〉 (14)

or U(x′′t′′;x, t) =
∫
dx′ U(x′′t′′;x′t′) U(x′t′;xt).

• Most often we do not directly know the time evolution operator in the position basis. But
suppose we know the energy levels and eigenfunctions, then we can get an expression for the
propagator U(x′ t′;x t). Suppose the energy levels are discrete Hψn = Enψn then

〈xf |U(tf , ti)|xi〉 =
∑
nn′

〈xf |n〉〈n|U(tf , ti)|n′〉〈n′|xi〉 =
∑
nn′

ψn(xf )〈n|e−
i
~H(tf−ti)|n′〉ψ∗n′(xi)

=
∑
n

ψn(xf )e−
i
~En(tf−ti)ψ∗n(xi). (15)

To better understand the propagator, we find the free particle propagator using our knowledge
of free particle energies and eigenfunctions.

4 Free particle propagator

• The free particle hamiltonian H = p2/2m is diagonal in the basis of momentum eigenstates

H|k〉 = ~2k2
2m |k〉 , and so is the time evolution operator U(t, t′) = e−

i
~H(t−t′)

U(t, t′)|k〉 = e−
i
~

~2k2
2m

(t−t′)|k〉 ⇒ 〈k|U(t, t′)|k′〉 = 2πδ(k − k′)e−
i~k2
2m

(t−t′) (16)

1Strictly, ψ(x, t0) = δ(x − x0) is not a good initial state, it isn’t normalizable. Indeed, it is a plane wave in
momentum space ψ̃(k) = e−ikx0 , and we know that plane waves are orthogonal but not normalizable. In a more
careful treatment, we would have to take say a gaussian wave packet for the initial state localized around x0 ,
instead of a delta-localized initial wave function.
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In the basis of position eigenstates 〈k|x〉 = e−ikx we have

〈x|U(t, t′)|x′〉 =

∫
[dk][dk′] 〈x|k〉 〈k|U(t, t′)|k′〉 〈k′|x′〉 =

∫
[dk] e−

i~k2(t−t′)
2m

+ik(x−x′) (17)

The ‘gaussian integral’2 is done by completing the square −ak2 + bk = −a(k − b/2a)2 + b2/4a
where

a =
i~
2m

(t− t′), b = i(x− x′) ⇒ U =

∫
[dk]e−ak

2+bk =
1

2π
eb

2/4a

√
π

a
(18)

Thus the propagator is

U(x t;x′ t′) =

(
m

ih(t− t′)

) 1
2

exp

[
i

~
m

2

(x− x′)2

(t− t′)

]
. (19)

Similarly in three dimensions we have

U(~r t;~r′ t′) =

(
m

ih(t− t′)

) 3
2

exp

[
i

~
m

2

|~r − ~r′|2

(t− t′)

]
. (20)

Since H is time-independent, U depends only on the difference t − t′ . As H is translation
invariant, U only depends on the difference ~r − ~r′ and furthermore only on the magnitude of
the difference on account of rotation invariance.

• The propagator is a gaussian in (x− x′) with a (complex) standard deviation σ

U(x t;x′ t′) =
1√
2πσ

e−
(x−x′)2

2σ2 where σ =

√
i~(t− t′)

m
(21)

Since σ ∝
√
t− t′ , the ‘width’ |σ| of the gaussian grows with time. This is an indication of

the dispersive broadening of the probability amplitude as time passes. To properly understand
this phenomenon, we must use this propagator to evolve, say, a gaussian wave packet forward
in time and see it broaden out. The advantage of having an explicit formula for the propagator
is that it can be used to evolve any state forward in time, not just a gaussian wave packet.

• Since the limit of gaussians as the width tends to zero is

lim
σ→0

1√
2πσ

e−x
2/2σ2

= δ(x), (22)

the propagator satisfies the unit initial condition representing a particle initially localized at x′

lim
t→t′

U(x, t;x′, t′) = δ(x− x′). (23)

• The free particle propagator (19) may be written in terms of the classical action of the straight
line path x(t) = xi+

xf−xi
tf−ti (t− ti) traversed by a classical particle in going from xi → xf as time

runs from ti → tf . The velocity is constant, and so is the Lagrangian L(t) = 1
2mẋ

2 = 1
2m

(xf−xi)2
(tf−ti)2

along such a straight line trajectory, so the classical action for this trajectory is

S(xf (tf ), xi(ti)) =

∫ tf

ti

L dt =
m

2

(xf − xi)2

(tf − ti)
. (24)

2This is not an ordinary real gaussian integral, but an oscillatory integral as the exponent is imaginary. More
care is needed to justify the answer obtained below than we provide here.
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Thus (U is dimensionless, but its matrix elements in the position basis have dimension 1/ length)

U(xf tf ;xi ti) =

(
m

ih(tf − ti)

) 1
2

exp

[
i

~
S (xf (tf ), xi(ti))

]
. (25)

Thus the amplitude for the free particle to be found at xf at tf given that it was at xi at ti is
proportional to the exponential of (i/~)× the action for the classical trajectory between those
two points. A similar formula holds in 3d with the exponent of the pre-factor 1/2 replaced by
3/2. We emphasize that this formula for the paopagator is special to a free particle and does
not generally hold for a particle in a potential.

5 Feynman path integral for a free particle

• Since the time evolution operator satisfies the reproducing property, we can write the free
particle propagator as a product of time evolution operators. Let us divide the time interval
[ti, tf ] into n subintervals ti = t0 < t1 < · · · < tn−1 < tn = tf (say equally spaced tj+1−tj = ∆t ,
for simplicity). Then

U(tf ; ti) = U(tn, tn−1)U(tn−1, tn−2) · · ·U(t1, t0). (26)

The amplitude for the free particle to go from x0 = xi(ti) to xn = xf (tf ) is

〈xf |U(tf , ti)|xi〉 =

∫
dxn−1 · · · dx1 〈xn|U(tn, tn−1)|xn−1〉 · · · 〈x1|U(t1, t0)|x0〉. (27)

Written in terms of the classical action, we have an exact formula for each n :

U(xn, tn;x0, t0) =
( m

ih∆t

)n
2

∫
dx1 · · · dxn−1 e

(i/~){S[x(tn),x(tn−1)]+S[x(tn−1),x(tn−2)]+···+S[x(t1),x(t0)]}.

(28)
So the propagator is an integral over all piecewise straight line paths going from x0(t0)→ xn(tn),
each comprising n segments. This is best illustrated by a figure. Each segment is a classical
trajectory and contributes a phase factor equal to (i/~)× its classical action. Though each
segment is a classical trajectory, when joined together, the resulting piecewise linear paths are
typically not classical trajectories. Now if we let n→∞ , formally we find that the free particle
propagator is proportional to an integral over all the paths connecting the initial and final
locations, each weighted by a phase proportional to the classical action for the path. Absorbing
the pre-factor (and its dimensions) into a pre-factor C and formally denoting the integration
element on the space of paths by D[x] ,

〈xf |U(tf , ti)|xi〉 = C

∫ x(tf )=xf

x(ti)=xi

D[x] e
i
~S[x] = C

∫ x(tf )=xf

x(ti)=xi

D[x] e
i
~
∫ tf
ti

1
2
mẋ2 dt. (29)

This representation of the free particle propagator is called the Feynman path integral. The
integral is over the space of paths connecting xi and xf . This is an infinite dimensional space,
and it is not easy to define integration over such an infinite dimensional space. However (28)
is a completely well-defined and exact formula that involves integration over a finite (n − 1)
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dimensional space3. A similar path integral representation is available for a particle moving in a
potential V (x). In that case, the weights for the individual paths are given by the exponential
of the classical action S[x] =

∫ tf
ti
dt
(

1
2mẋ

2 − V (x)
)
. Though we do not have an explicit formula

like (25) for the propagator of a particle moving in an arbitrary potential V (x), it can be shown
that the above path integral representation for the time-evolution operator continues to hold.

• Classically the particle follows a trajectory that solves Newton’s equation. The principle of
stationary action says that a classical trajectory between xi(ti) and xf (tf ) is one for which
the classical action functional is extremal. Quantum mechanically, the above formula says that
one way to compute the propagator, is to evaluate a sum over paths. This does not mean
that the particle travels along all these paths, nor does it imply that the particle has any well-
defined trajectory. However, we sometimes loosely say that in QM, the particle samples all paths
including the classical trajectory.

• The Feynman path integral reformulates the problem of solving the SE for the time evolution
operator on a Hilbert space. Rather than work with operators and Hilbert spaces, it says that
we may compute the sum of phases contributed by various paths, each weighted by its classical
action. So the problem of quantum evolution is couched in terms of some classical concepts.
However, QM has not been reduced to classical mechanics. No where in CM do we admit paths
for particles that are not classical trajectories.

• We can recover the principle of extremal action from the Feynman path integral by appropri-
ately considering the limit ~→ 0. Each path x(t) contributes a phase (i/~)S[x] to the sum over
paths. Now consider two adjacent paths x(t) and x(t)+δx(t) with δx(ti) = δx(tf ) = 0. Suppose
further that S′[x] 6= 0. In the semi-classical limit, the difference in their actions S[x]−S[x+ δx]

will typically be quite large compared to ~ . So they contribute with rather different phases e
i
~S .

In this manner, the amplitudes of nearby paths contribute ‘random’ (i.e. not all correlated and
pointing in one direction) phases which destructively interfere and cancel out. Thus these paths
do not contribute significantly to the propagator in the semi-classical approximation. However,
there is occasionally a path xcl(t) in whose vicinity all paths contribute constructively to the
sum. This happens if the action is stationary, which is precisely the case for the classical tra-
jectory S′[xcl] = 0. In other words, paths in the neighborhood of the classical trajectory have
roughly the same classical action and therefore contribute roughly the same phase e(i/~)S[x] to
the sum over paths. This constructive interference in the neighborhood of the classical trajectory
explains why we may approximate quantum dynamics by motion along the classical trajectory
in the classical limit. All the other paths in the Feynman path integral contribute negligibly to
the propagator when ~→ 0.

• Note that we are not taking the ~→ 0 limit of the propagator U(t, t′). We are only discussing
the relative contributions of various paths to the path integral in the ~ → 0 limit. We already
know from the semiclassical WKB analysis that the wave function does not have a good ~→ 0
limit, as it has an essential singularity at ~ = 0. Similarly, the time-evolution operator does not
have a good classical limit. However, as is evident from (25), the logarithm of the time evolution
operator (times −i~) has a good classical limit, indeed, it is the classical action of the classical
trajectory in that case4.

3So we use integration over a finite dimensional space to approximate integration over an infinite dimensional
space. This is analogous to how we use finite Riemann sums to approximate integration over the infinite set of
points in an interval.

4Though the limits t → t′ and ~ → 0 look formally the same, a more careful treatment of (19) shows that
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• We can interpret interference and diffraction phenomena for matter waves (e.g. electrons)
in terms of the Feynman path integral. In the absence of any obstacles, the amplitude for the
particle to go from xi(ti) to xf (tf ) is given by a sum over all paths connecting these locations.
If an obstacle is introduced, certain paths are forbidden, but there are still many paths that
‘go around’ the obstacle, though they are not classical trajectories. These are the paths that
contribute to ‘diffraction around an obstacle’. In double slit interference, the amplitude at a
point xf (tf ) on the screen is given by a sum over paths. These include piecewise straight line
paths (‘classical trajectories’) that go through either one of the slits S1 or S2 . But there are
other paths that go through S1 , come out of S2 and go back out through S1 before reaching
the screen. We must sum over all these paths. The contributions of most of these paths cancel
out due to destructive interference with nearby paths since the action is not stationary around
them. In the semi-classical limit, it is the two piecewise straight-line paths around which the
action is stationary, that contribute maximally to the amplitude. Thus it is sufficient to consider
the interference between these two paths to get the interference pattern on the screen to first
approximation.

6 Path integral for a particle in a potential

• Consider a particle in a potential with hamiltonian H = p̂2

2m + V (x̂). We wish to find a
path integral representation for the propagator. Here, unlike for the free particle we do not
have an explicit formula for U since we do not know the energy levels and eigenfunctions
of H . Nevertheless, we wish to write the propagator in terms of classical quantities like the

Lagrangian/Hamiltonian/action. Recall that U(t, t′) = e−
i
~H(t−t′) . Let us begin by expressing

the matrix elements of H in term of the classical hamiltonian. Ĥ in the position basis is a
differential operator and in the momentum basis is also a differential operator. But interestingly,
the mixed matrix elements 〈p|Ĥ|x〉 are directly related to the classical hamiltonian

〈k|Ĥ|x〉 = 〈k|x〉H(x, p) = e−ikxH(x, p) (30)

To see this, note that x̂|x〉 = x|x〉 , 〈k|p̂ = 〈k|p where p = ~k and x, p are real numbers, not
operators. So 〈k|x̂|x〉 = x〈k|x〉 and 〈k|p̂|x〉 = p〈k|x〉 . Thus

Ĥ|x〉 =

(
p̂2

2m
+ V (x̂)

)
|x〉 =

(
p̂2

2m
+ V (x)

)
|x〉 ⇒

〈k|Ĥ|x〉 = 〈k|
(
p2

2m
+ V (x)

)
|x〉 =

(
p2

2m
+ V (x)

)
〈k|x〉 = e−ikx

(
p2

2m
+ V (x)

)
= e−ikxH(x, p)

However, since x̂ and p̂ do not commute, for a non-constant potential,

〈k|e−
i
~ ( p̂

2

2m
+V (x̂))(t−t′)|x〉 6= e

− i
~

(
p2

2m
+V (x)

)
(t−t′)

e−ikx. (31)

Nevertheless, they are approximately equal if t− t′ = ∆t is small. As a consequence, the mixed
matrix elements of the infinitesimal time evolution operator may also be expressed in terms of

they are not the same. In a sense the limit t → t′ needs to be taken via real gaussians while the limit ~ → 0 is
the naive one. This is to be expected on physical grounds, the propagator must tend to the identity at t = t′ and
must have an essential singularity as ~→ 0

9



the classical hamiltonian. For small ∆t , U(∆t) ≈ I − i
~H∆t , so

〈k|U(∆t)|x〉 ≈ 〈k|I − i

~
Ĥ∆t|x〉 =

(
1− i

~
H(x, p)∆t

)
e−ikx ≈ e−

i
~H(x,p)∆te−ikx (32)

Unlike the case of a free particle where we had an exact formula (25) for 〈x|U(∆t)|x′〉 in terms
of the classical action, here we only have an approximate formula for 〈k|U(∆t)|x〉 in terms
of the classical hamiltonian. However, this is adequate to derive a Feynman path integral
representation, since we are going to let ∆t→ 0 eventually.

• We can use these mixed matrix elements to evaluate the propagator in the position basis. As
before, we sub-divide the time tf − ti = n∆t into n equal steps tj = ti + j∆t for 0 ≤ j ≤ n
and denote xi = x0, xf = xn . Using the reproducing property we have

〈xf |U(tf , ti)|xi〉 =

∫
dx1 · · · dxn−1〈xn|U(tn, tn−1)|xn−1〉〈xn−1|U(tn−1, tn−2)|xn−2〉 · · · 〈x1|U(t1, t0)|x0〉

(33)

In order to exploit our formula for the mixed matrix elements of U , we insert complete sets of
momentum eigenstates in n places. Thus

U(xf tf , xiti) =

∫
dx1 · · · dxn−1[dk0 · · · dkn−1] 〈xn|kn−1〉〈kn−1|U(tn, tn−1)|xn−1〉〈xn−1|kn−2〉

〈kn−2|U(tn−1, tn−2)|xn−2〉 · · · 〈k1|U(t2, t1)|x1〉〈x1|k0〉〈k0|U(t1, t0)|x0〉

≈
∫
dx1 · · · dxn−1[dk0 · · · dkn−1] exp

i n−1∑
j=0

kj(xj+1 − xj)−
i

~

n−1∑
j=0

H(xj , pj)∆t


=

∫
dx1 · · · dxn−1[dk0 · · · dkn−1] exp

 i
~

n−1∑
j=0

∆t

(
pj

(xj+1 − xj)
∆t

−H(xj , pj)

)
Now as n→∞ the exponent tends to i

~
∫ tf
ti

(pẋ−H(x, p)) dt , a formula familiar from classical
mechanics. The first term is the abbreviated action we came across in the the semiclassical
approximation. We write formally (absorbing the numerical factors of 1/2π~ into a pre-factor
C )

U(xf tf , xiti) = C

∫ x(tf )=xf

x(ti)=xi

D[x] D[p] e
i
~
∫ tf
ti

(pẋ−H(x,p)) dt (34)

This is called a phase space path integral, as we integrate over paths in phase space (x(t), p(t)).
Notice however, that the initial and final momenta are unconstrained, unlike the initial and final
positions. To get the configuration space path integral, we perform the gaussian integral over
the momenta. This is possible since H(x, p) = p2/2m + V (x) is quadratic in the momenta.
Returning to the finite n formula, let us consider one of the p integrals

Ij =

∫
dpj
h
e

i
~

(
pj(xj+1−xj)−

p2j
2m

)
∆t

=

√
m

ih∆t
exp

[
i

~
m

2

(xj+1 − xj)2

∆t

]
(35)

Thus we have an expression for U(xf tf , xiti) which becomes increasingly accurate as n→∞ :

U(xf tf , xiti) ≈
( m

ih∆t

)n/2 ∫
dx1 · · · dxn−1 exp

 i
~

n−1∑
j=0

(
1

2
m

(xj+1 − xj)2

(∆t)2
− V (xj)

)
∆t

 (36)
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In the limit n → ∞ we see that the exponent becomes the classical action for the path x(t).
We write the propagator formally as a path integral

U(xf tf , xiti) = C

∫
D[x] e

i
~
∫ tf
ti

[ 12mẋ
2−V (x)]dt (37)

where some (dimensional) factors have been absorbed into the pre-factor C . We are not in a
position to give a direct mathematically precise definition for such a path integral. What is more,
C , D[x] , D[p] in all likelihood cannot be given a meaning in isolation. However, it is likely that
the integral as a whole can be given a mathematically precise meaning. In any case, the finite
n version above gives a sequence of calculable approximants which can be improved by making
n larger, just as we can improve our calculation of the area of a region of the plane by using
a finer square grid. We may also profitably regard the path integral as a short-hand notation
for the previous multiple integral as n is made large. This is similar to the way we regard the
expression

∫ b
a f(x)dx as a short-hand notation for the process of taking Riemann sums. Just

as we first learned to integrate polynomials and trigonometric functions before attempting to
define the integral of an arbitrary function, it is necessary to understand the path integral and
its physical implications for simple quantum mechanical systems before attempting to give a
mathematically precise definition of the path integral.

7 Linear harmonic oscillator via path integrals

7.1 Harmonic oscillator propagator by path integral

• It was reasonably easy to find the energy levels of the SHO by solving the Schrödinger eigen-
value problem using creation-annihilation operators. We could use the spectrum of energies En
and eigenfunctions ψn(x) = 〈x|n〉 (Hermite polynomial times gaussian) to find the propagator
by summing the series

〈xf |U(tf , ti)|xi〉 =
∑
n

e−iEn(tf−ti)/~ψn(xf )ψ∗n(xi). (38)

The path integral gives a different way of finding the SHO propagator. In fact, we can even find
the energy spectrum from the propagator. Recall the path integral representation

U(xf , tf ;xi, ti) = C

∫ x(tf )=xf

x(ti)=xi

D[x] e
i
~
∫ tf
ti

[ 12mẋ(t)2− 1
2
mω2x(t)2]dt. (39)

The main problem is to give a meaning to this path integral by defining it as the limit of
appropriate multi-dimensional integrals. In particular, we haven’t tried to define the integration
element on paths D[x] by taking a limit of time-sliced integrals dx1 · · · dxN−1 nor the factor
C by taking the limit of CN = (m/ih∆t)N/2 since these may not be individually meaningful.
Indeed CN tends to infinity. However, the pre-factor CN will be multiplied by certain other
factors arising from evaluation of the integral

∫
D[x] · · · , these other factors will tend to zero, so

that the product has a finite limit. Moreover, all these factors will be seen to be independent of
ω, xi and xf and can be fixed by requiring that the SHO propagator reduce to the free particle
propagator in the limit ω → 0.

• Since U is only a function of the difference tf − ti , we may without loss of generality take
ti = 0 and write T = tf . We will evaluate this integral over paths in the generic case where ωT

11



isn’t an integer multiple of π . We have already seen that there is a unique classical trajectory
joining xi, ti and xf , tf in this case. The exceptional cases ωT = nπ are more subtle since
there are either none or infinitely many classical trajectories joining xi to xf if Tω is an integer
multiple of π .

• The Lagrangian is quadratic in x(t), so the above path integral looks like an (infinite dimen-
sional) gaussian integral. To exploit this feature, let xcl be the unique classical trajectory satis-
fying the above boundary conditions and let us write the path x(t) as x(t) = xcl(t)+δx(t) where
δx(t) is an arbitrary (not necessarily small) variation in the path satisfying δx(0) = δx(T ) = 0.
Then S is extremal at xcl and we may write the path integral as an integral over the variations
δx

U = Ce
i
~S[xcl]

∫ δx(tf )=0

δx(ti)=0
D[δx] exp

{
i

~

∫ tf

ti

[
1

2
m δẋ2 − 1

2
mω2δx2

]
dt

}
= Ce

i
~S[xcl]

∫ δx(tf )=0

δx(ti)=0
D[δx] exp

i

~

∫ T

0
δx(t)A δx(t) dt where A = −m

2

(
d2

dt2
+ ω2

)
.(40)

The exponent is quadratic in the variables of integration δx(t), so this is an infinite dimensional
analogue of a gaussian integral5. We give meaning to it as a limit of finite dimensional discretized
integrals. There are many ways of discretizing the integral. Rather than time-slice the interval
(which is how we arrived at the path integral in the first place), let us follow the somewhat
more elegant method of Fourier monomials, which are an eigenbasis for the hessian operator
A (second variation of the action). δx(t) is a function that vanishes at the end points of the
interval [0, T ] . The Fourier sine monomials φn(t) = sin nπt

T are a complete orthogonal set of
eigenfunctions of A in the Hilbert space of square-integrable functions on [0, T ] vanishing at
the end points. φn have non-zero eigenvalues as long as ωT 6= nπ :

for n = 1, 2, . . . , Aφn = −1

2
m

(
d2

dt2
+ ω2

)
sin

nπt

T
= λn sin

nπt

T
where λn =

m

2

(
n2π2

T 2
− ω2

)
6= 0.

So we should expect the gaussian integral to simplify in the Fourier sine basis, which in effect
is a convenient basis to compute the determinant of A . We may expand δx(t) in a Fourier sine
series

δx(t) =

∞∑
n=1

cn sin
nπt

T
, where cn ∈ R. (41)

The information in δx(t) is contained in the Fourier coefficients, so an integration over all
paths may be replaced by an integration over all possible Fourier coefficients, any Jacobian from
the change in integration element will be absorbed into the pre factor C . To make it a finite
dimensional integral, we restrict to Fourier polynomials of degree N and eventually let N →∞ .
First we write the integrand in terms of the Fourier coefficients. Using orthogonality of sin nπt

T ,
we have ∫ T

0

[
1

2
mδẋ2 − 1

2
mω2δx2

]
=
m

2

T

2

∞∑
1

c2
n

(
n2π2

T 2
− ω2

)
(42)

There are no cross terms cncm for n 6= m as A is diagonal in the Fourier sine basis. Thus the

5E.g. A finite dimensional gaussian integral over x1, · · · , xN : I =
∫
e−x

tAx∏
i dxi for a real symmetric

matrix A . It may be evaluated by going to a basis in which A is diagonal, one gets I =
∫
e−

∑
n any

2
n
∏
n dyn =

πN/2(a1 · · · aN )−1/2 = πN/2/
√

detA
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N th approximant to the propagator is a product of gaussian integrals

UN (xf , T ;xi, 0) = CNe
i
~S[xcl]

∫ ∞
−∞

(
N∏
n=1

dcn

)
exp

{
−mT

4i~

N∑
1

c2
n

(
n2π2

T 2
− ω2

)}

= CNe
i
~S[xcl]

N∏
1

[∫ ∞
−∞

e−αnc
2
n dcn

]
where αn =

mT

4i~

(
n2π2

T 2
− ω2

)
=
mπ2n2

4i~T

(
1− ω2T 2

n2π2

)
.

The gaussian integrals are evaluated and one gets

UN =
CNπ

N/2√∏N
1

mπ2n2

4i~T

e
i
~S[xcl]

N∏
1

(
1− ω2T 2

n2π2

)−1/2

= C̃N (h,m, T ) e
i
~S[xcl]

[
N∏
n=1

(
1− ω2T 2

n2π2

)]−1/2

.

(43)

Both CNπ
N/2 as well as the denominator

√∏N
1

mπ2n2

4i~T are divergent as N →∞ , but the limit

is taken in such a way that the quotient C̃N has a finite limit. Note that the new pre-factor
C̃N is independent of ω, xi and xf . So let us denote C̃(h,m, T ) = limN→∞ C̃N . As for the
ω -dependent product (see homework),

lim
N→∞

N∏
n=1

(
1− ω2T 2

n2π2

)
=

sinωT

ωT
. (44)

Thus the SHO propagator is

USHO(xf , T ;xi, 0) = C̃(h,m, T )

√
ωT

sinωT
exp

{
i

~
S[xcl]

}
(45)

The factor C̃ is fixed by comparing with the free particle propagator

lim
ω→0

USHO = U free particle =

√
m

ihT
e
i
~S[xcl] ⇒ C̃ =

√
m

ihT
(46)

So the SHO propagator (also known as the Mehler kernel) when ωT 6= nπ is

U(xf , T ;xi, 0) =

√
mω

ih sinωT
exp

{
i

~
S[xcl]

}
. (47)

where xcl(t) is the unique classical trajectory satisfying x(0) = xi and x(T ) = xf and

S[xcl] =
mω

2 sinωT

[
(x2
i + x2

f ) cosωT − 2xixf
]
. (48)

7.2 Harmonic oscillator spectrum from path integral

Now that we have evaluated the SHO propagator by path integrals, we put it to use to obtain
the SHO energy levels. This provides an alternate route to the SHO spectrum without any need
to solve the Schrödinger eigenvalue problem. The main idea is to exploit the relation

U(T ) = U(T, 0) = e−iHT/~ =
∑
nn′

|n〉〈n|e−iHT/~|n′〉〈n′| =
∑
n

e−iEnT/~|n〉〈n| (49)
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To concentrate on the energy spectrum, we evaluate the trace of U . U is diagonal in the energy
basis, so its trace is easily expressed in terms of the energy levels.

tr U(T ) =
∑
n

e−iEnT/~ (50)

The trace is basis independent, so we will compute it in the position basis using our formula (47)
for the propagator, assuming ωT 6= nπ . By comparing the answer with the previous expression,
we aim to extract the energy levels. Recall that the SHO propagator is

U(xf , T ;xi, 0) =

√
mω

ih sinωT
exp

{
i

~
S[xcl]

}
(51)

For tf − ti = T 6= nπ/ω , the unique classical trajectory joining xi to xf is (denote cosωti = ci
etc)

x(t) = a cosωt+ b sinωt where a =
sfxi − sixf

sf−i
and b =

cixf − cfxi
sf−i

. (52)

The Lagrangian for this trajectory L = 1
2mẋ

2 − 1
2mω

2x2 is (denote s = sinωt, c = cosωt)

L =
1

2
mω2

[
a2
(
s2 − c2

)
+ b2

(
c2 − s2

)
− 4absc

]
=

1

2
mω2

[(
b2 − a2

)
cos 2ωt− 2ab sin 2ωt

]
.

(53)
Without loss of generality, we take ti = 0, tf = T and the action for this path is

S[x] =

∫ T

0
L dt =

mω

2

[(
b2 − a2

)
2

sin 2ωT − 2 ab sin2 ωT

]
=

mω

2 sinωT

[
(x2
i + x2

f ) cosωT − 2xixf
]

where a = xi and b =
xf−xicf

sf
. To evaluate the trace of the propagator,

tr U(T ) =

∫ ∞
−∞
〈x | U(T ) | x〉dx, (54)

we need the action of the classical trajectory x(t) with xi = xf = x for 0 ≤ t ≤ T . In this case,
one finds6

a = x, b = x tan
ωT

2
, x(t) = x[cosωt+tan

ωT

2
sinωt] and S[x, T ;x, 0] = −mωx2 tan

(
ωT

2

)
6This trajectory makes sense as long as T 6= (2n+ 1)π/ω which is ensured by our assumption that ωT 6= nπ .

It is checked that x(0) = x(T ) = x . Note that for this trajectory, the particle returns to the point x after a time
T that has nothing to do with the period of oscillation T ∗ = 2π/ω . This is because, when the particle returns to
x , its velocity is reversed in sign. The time it takes for this need not be a half period, nor have any relation to the
period. To visualize this, imagine a point x near the maximal extension of an oscillating spring. The tip of the
spring passes through x on its way out and returns to x on its way in, and the time elapsed T has nothing to do
with the period of oscillation. To drive home this point, move x closer to the maximal extension point. Then T
will decrease, while the period of oscillation T ∗ is unaltered. Of course, there are exceptional points x to which
a particle can return only after a time equal to a multiple of a half-period T ∗/2. These are the points of maximal
extension and the point x = 0. These exceptional cases are mostly omitted via the assumption T 6= nπ/ω . The
exceptional case x = 0 is included via the trajectory x(t) ≡ 0, which returns to x = 0 after any time T and has
zero action.
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Thus the trace of the propagator has been reduced to a gaussian integral which we evaluate

tr U(T ) =

∫ ∞
−∞

U(x, T ;x, 0)dx =

√
mω

ih sinωT

∫ ∞
−∞

exp

[
− i
~
mωx2 tan

ωT

2

]
dx =

(
2i sin

ωT

2

)−1

(55)
We can now use this remarkably simple formula for the trace of the propagator to recover the
SHO spectrum. We wish to write tr U as a sum of phases each proportional to the time T ,
and compare with the expression tr U =

∑
n e
−iEnT/~ to read off the energies

tr U =
1

eiωT/2 − e−iωT/2
=

e−iωT/2

1− e−iωT
=
∞∑
0

exp

[
− iT

~
~ω
(
n+

1

2

)]
(56)

From this we infer the spectrum of energies of the SHO, En = ~ω
(
n+ 1

2

)
.
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