
Summary of Research: Govind S. Krishnaswami
Chennai Mathematical Institute, 19 Jan, 2025

My work in theoretical and mathematical physics with various collaborators and students
spans topics in quantum field theory, particle physics, integrable systems, fluid, plasma and
nonlinear dynamics.

1. Collinear QCD: Understanding the behavior of baryons and mesons from QCD is a
challenge. One aims to explain how quarks and gluons bind to form hadrons. We have
worked on 1+1 dimensional QCD in ’t Hooft’s multi-color large-N limit with V John
and S G Rajeev. Rajeev showed that the baryon arises as a topological soliton of a gauge-
invariant bi-local reformulation of the theory. We found its ground state form-factor and
mass in the chiral limit and used it to model the non-perturbative Bjorken-x dependence
of nucleon structure functions [1, 2, 3, 4]. Earlier work [5] on a neutrino-nucleon deep
inelastic scattering experiment had focused on measuring structure functions. Our results
were shown to agree with experimental data [6, 7]. The geometry of the phase space
was used to deduce a relativistic interacting parton model as a variational approximation
to the bi-local solitonic picture [8, 9]. Generalizing ’t Hooft’s equation for mesons, an
approximate equation for the spectrum of excited baryons was obtained in [3].

2. Large-N matrix models and non-commutative probability: Matrix models may be
regarded as toy-models for the dynamics of gluons. In our work with L Akant and S G
Rajeev [10, 1] we found a variational principle for the large-N equations of Euclidean
multi-matrix models, circumventing a cohomological obstruction involving Voiculescu’s
entropy of operator-valued random variables. With A Agarwal, L Akant and S G Rajeev,
this was extended to a gauge-invariant formulation of Hamiltonian multi-matrix models,
by relating non-commutative Fisher information to the collective potential of Jevicki and
Sakita [11].

3. Loop equations of large-N matrix models: It is a long-standing problem to understand
and solve the loop equations or factorized Schwinger-Dyson equations for correlations of
multi-matrix models in the large-N limit. We formulated them as quadratic difference
equations in concatenation of gluon correlations [12]. They aren’t differential equations
as they involve left annihilation, which does not satisfy the Leibniz rule for concatena-
tion. But left annihilation is a derivation of the commutative shuffle product. An approxi-
mation method was proposed by expanding concatenation around the shuffle product. At
zeroth order for the Gaussian, Chern-Simons and Yang-Mills matrix models, the resulting
quadratic PDEs were shown to linearize by passage to the shuffle reciprocal of correla-
tions. However, the equations are under-determined in general, as are the loop equations
themselves. With L Akant [13] we identified Ward identities related to symmetries of
action and measure to supplement the loop equations. New variational and other approx-
imation schemes for the loop equations were also found [12, 14]. In [15, 16] we found a
matrix model analogue of the group of loops on space-time that plays an important role
in Yang-Mills theory. It is the spectrum of a commutative shuffle-deconcatenation Hopf
algebra associated to gluon correlations. The generating series for large-N correlations is
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a function on this group and satisfies quadratic loop equations in convolution. The asso-
ciated Schwinger-Dyson operators for Yang-Mills, Chern-Simons and Gaussian models
were shown to be right-invariant vector fields on this group.

4. Phase transition in a matrix model for gluons in baryons: Inspired by the reduction of
QCD to 1+1 dimensions, in [17] we studied a large-N matrix model coupled to quarks.
Though quarks are usually suppressed by 1/N , their contribution rivals that of gluons in
a baryon containing N quarks. After some truncations, quarks were integrated out and a
1-matrix model for gluons with polynomial + logarithmic potential obtained. We found
a 3rd order phase transition as the ratio of quark mass to gauge coupling is increased,
separating a 2-cut chiral limit where light quarks are strongly coupled to gluons from a
1-cut phase where heavy quarks are weakly coupled to gluons.

5. Abelian ‘gauge theory’ inspired by Eulerian hydrodynamics: Our earlier work indi-
cated the importance of non-commutative analogues of diffeomorphism groups in gauge-
invariant formulations of large-N matrix models. A simpler occurrence of diffeomor-
phism groups is found in fluid mechanics: the configuration space of Eulerian hydrody-
namics is the group of volume-preserving diffeomorphisms of the flow domain. In [18]
Eulerian hydrodynamics on a surface M with volume form µ and metric was formulated
as an abelian gauge theory using a duality between volume preserving vector fields and
1-forms modulo exact 1-forms. Choosing the L2 norm of velocity as the Hamiltonian
leads to standard Eulerian hydrodynamics. Interestingly, choosing magnetic energy as
Hamiltonian leads to another geodesic flow on SDiff(M ,µ) which we showed admits an
infinite sequence of local conserved charges in involution.

6. Non-trivial fixed points for 4D O(N) scalar fields: In [19] we studied four dimensional
scalar fields in an attempt to circumvent the UV and naturalness problems in the Higgs
sector of the standard model of particle physics. We found a line of UV fixed points in
4D O(N) scalar field theory in the large-N limit. A mass deformation from such a fixed
point would have naturally light scalar excitations on account of scale invariance. In 3D,
our construction reduces to the line of large-N fixed-points in |φ|6 theory.

7. Scale-invariant cousin of KdV: In work with D Ahalpara, A Sen and A Thyagaraja
that combined genetic programming and analytical methods, we found a remarkable
nonlinear scale-invariant advection-dispersion equation for one dimensional flow ut +
(2uxx/u)ux = εuxxx [20]. This cousin (SIdV) of the KdV equation admits plane, solitary
and cnoidal waves. It is a bridge between nonlinear dispersive advection and diffusion.
For some special values of the coefficient of dispersion ε we could find a Hamiltonian
formulation and transform it into the integrable mKdV equation or a linear equation. Nu-
merical simulations show that SIdV displays recurrence in bounded domains. We have
also shown that it is a member of an infinite dimensional family of equations sharing the
KdV solitary wave.

8. Spin quantum plasmas: With R Nityananda, A Sen and A Thyagaraja, we critically ex-
amined [21, 22] recent semi-classical theories of spin-half quantum plasmas and claims
of spin-gradient-driven light amplification in quantum plasmas [23, 24]. We showed that

2



some of the derivations and results contradict principles of quantum and statistical me-
chanics especially in their treatment of fermions and spin. Claims of large semi-classical
effects of spin magnetic moments that could dominate the plasma dynamics were found
to be invalid both for single-particles and collectively. Larmor moments dominate at high
temperature while spin moments cancel due to Pauli blocking at low temperatures. Nu-
merical estimates from a variety of plasmas were provided to demonstrate that spin effects
are much smaller than many neglected classical effects.

9. Fluid analogy for the Higgs mechanism: With S S Phatak we found a novel correspon-
dence between the Higgs mechanism and the added-mass effect in inviscid hydrodynam-
ics [25, 26]. A rigid body accelerated through inviscid, incompressible and irrotational
flow feels an added mass. The added force is linear in its acceleration but can point in
a direction determined by the ‘added mass tensor’, which depends on the shape of the
body. In our analogy, the gauge Lie algebra corresponds to the space of directions in
which a rigid body can move in a fluid. The vector boson mass matrix corresponds to the
added-mass tensor. The pattern of gauge symmetry breaking is encoded in the shape of an
associated rigid body. Symmetries of the body are related to those of the scalar vacuum
manifold. For instance, an SO(3) gauge theory spontaneously broken to SO(2) corre-
sponds to a hollow cylindrical shell with one zero and two equal added-mass eigenvalues.
The vacuum expectation value of the scalar field is analogous to the (constant) density of
fluid while quantum fluctuations around the Higgs vacuum are like density fluctuations
around incompressible flow. A long wavelength wave around an accelerated body should
play the role of the Higgs particle.

10. Algebra and geometry of Hamilton’s quaternions. Inspired by the relation between the
algebra of complex numbers and plane geometry, William Rowan Hamilton sought an al-
gebra of triples for application to three dimensional geometry. Unable to multiply and
divide triples, he invented a non-commutative division algebra of quadruples, in what he
considered his most significant work, generalizing the real and complex number systems.
In this expository article with S Sachdev [27], we give a motivated introduction to quater-
nions and discuss how they are related to Pauli matrices, rotations in three dimensions,
the three sphere, the group SU(2) and the celebrated Hopf fibrations.

11. Conservative regularization of ideal fluids and plasmas. Ideal neutral and charged
fluid flows can develop singularities that may be regularized either by dissipative or con-
servative mechanisms. For instance, the one dimensional Hopf equation ut + uux = 0
used to model kinematic advection and traffic flow can develop shock-like singularities
with ux diverging and u becoming multi-valued in finite time, for a large class of initial
data [28]. These singularities are physically regularized either by introducing viscosity as
in the Burgers equation (ut + uux = νuxx ) or through dispersion as in the KdV equation
(ut+uux = αuxxx ) with applications to water waves, ion acoustic waves etc. More gener-
ally, in three dimensions, compressible Eulerian flow (ρ(vt+v·∇v) = −∇p) can develop
shock-like and vortical singularities: enstrophy

∫
w2 d3r can become very large due to

the phenomenon of vortex stretching. Here w = ∇×v is the vorticity of the velocity field
v . While the celebrated Navier-Stokes equation (whose regularity is the subject of a Clay
millenium problem [29]) provides a viscous regularization, a physically well-motivated
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local conservative regularization was not available (the α-Euler equation of Holm, Mars-
den and Ratiu [30] is non-local). With S Sachdev and A Thyagaraja, we developed a
new local conservative ‘twirl’ regularization of compressible flow, magnetohydrodynam-
ics and two-fluid plasmas, preserving Galilean and discrete symmetries [31, 32, 33, 34].
The twirl term −λ2w× (∇×w) in the regularized Euler equation is a 3D inviscid coun-
terpart of Navier-Stokes viscosity ν∇2v and corresponds to the inclusion of a vortical
energy

∫
λ2ρ w2 d3r in the Hamiltonian. Here λ is a dynamical short-distance cutoff

subject to the constitutive law λ2ρ = constant, and could be taken as the Debye length or
skin depth in plasmas, both of which vary inversely with the square-root of density. The
regularization is minimal in nonlinearity and derivatives and could be important in flows
with significant vorticity, it could also help regulate numerical simulations. It implies an
a priori upper bound on enstrophy, thus regularizing vortical singularities. Lagrangian
as well as Hamiltonian-Poisson bracket formulations have been found. Steady solutions
of the regularized equations modelling a columnar vortex (tornado), MHD pinch, vortex
sheet, channel flow and spherical/cylindrical vortices have been found.

12. Geometrical approach to the three-body problem: With H Senapati, we have worked
on a geometrical approach to the classical planar 3-body problem [35, 36]. Trajectories
are reparametrized geodesics of the Jacobi-Maupertuis metric on configuration space,
which possesses translation and rotation isometries for any central potential as well as
scaling isometries for the zero-energy 1/r2 potential. Techniques of Riemannian sub-
mersions are used to quotient the full six dimensional configuration space R6 by these
symmetries to arrive at geodesic dynamics on the three-sphere, shape space R3 and the
shape sphere S2 with collision configurations removed. We extend work of R Mont-
gomery to show that the scalar curvature is strictly negative on these quotients and find
sectional curvatures to be largely negative, indicating widespread geodesic instabilities.
The qualitative dynamical consequences of this partial negativity in curvature remain to
be understood. While the Jacobi-Maupertuis metric for the Newtonian potential is shown
to be geodesically incomplete, it is complete for the 1/r2 potential, so that pairwise and
triple collisions are, in a sense, regularized.

13. Hamiltonian formulation and integrability of the Rajeev-Ranken model: With T R
Vishnu, we have been studying a 1+1 dimensional scalar field theory dual to the prin-
cipal chiral model and its reduction to a mechanical system [38]. The integrable 1+1-
dimensional SU(2) principal chiral model (PCM) serves as a toy-model for the theory of
strong interactions (3+1-dimensional Yang-Mills theory and QCD) as it is asymptotically
free and displays a mass gap [39]. Interestingly, the PCM is ‘pseudo-dual’ to a scalar
field theory introduced by Zakharov and Mikhailov [40] and Nappi [41] that is strongly
coupled in the ultraviolet and could serve as a toy-model for non-perturbative properties
of theories with a Landau pole (such as λφ4 in the Higgs sector of the standard model).
In particular, one wishes to identify degrees of freedom appropriate to the description of
the dynamics of such models at high energies. Unlike the semi-direct product of su(2)
and abelian current algebras of the PCM, its pseudo-dual is based on a nilpotent current
algebra. Theories that admit a formulation in terms of quadratic Hamiltonians and nilpo-
tent Lie algebras are particularly interesting: they include the harmonic and anharmonic
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oscillators as well as field theories such as Maxwell, λφ4 and Yang-Mills. Recently, Ra-
jeev and Ranken [42] obtained a mechanical reduction by restricting the nilpotent scalar
field theory to a class of nonlinear classical waves expressible in terms of elliptic func-
tions, whose quantization survives the passage to the strong-coupling limit. We study
the Hamiltonian and Lagrangian formulations of this model and its classical integrabil-
ity, identifying Darboux coordinates, Lax pairs [43, 44, 45], classical r -matrices and a
degenerate Poisson pencil. We identify Casimirs as well as a complete set of conserved
quantities in involution and the canonical transformations they generate. They are related
to Noether charges of the field theory and are shown to be generically functionally in-
dependent, implying Liouville integrability. We also find an interesting relation between
this model and the Neumann model [46] allowing us to discover a new Hamiltonian for-
mulation of the latter.

14. Stability and chaos in the classical three rotor problem: The classical three body
problem [47], which arose in trying to understand the effect of the Sun on the Moon’s
Keplerian orbit around the Earth, has been a rich source of phenomena and a context for
developing techniques [36]. Euler and Lagrange found periodic solutions while Poincaré
discovered chaos in this problem. Its study catalyzed the development of perturbation
theory and canonical transformations and has shed light on the nature of collisional and
non-collisional singularities [48]. With H Senapati [49, 50], we have investigated a sim-
pler variant: the equal-mass classical three rotor problem, where particles move without
collisions on a circle, subject to inter-particle cosine potentials of strength g . The quan-
tum version of the N -rotor problem models chains of coupled Josephson junctions and
also arises via a partial continuum limit of a Wick rotated version of the 2d XY model
of statistical mechanics. Classically, while the two rotor problem reduces to the simple
pendulum, the limit of infinitely many rotors is related to the sine-Gordon field. Away
from these extremes, we find that the three rotor problem displays rich dynamics with
novel signatures of the transition to chaos as the relative energy E in units of g is varied.
We find new periodic ‘pendulum’ and ‘breather’ orbits at all E and choreographies up
to moderate E . Loosely, they furnish analogs of the Euler-Lagrange and figure-8 [51]
solutions of the planar gravitational three body problem. Integrability at very low ener-
gies gives way to a rather marked transition to chaos around Ec ≈ 4g , followed by a
regime of global chaos and a gradual return to regularity as E diverges. The transition
to chaos is accompanied by several striking phenomena: (a) the fraction of the area of
Poincaré surfaces occupied by chaotic sections rises sharply around Ec , (b) discrete sym-
metries visible on Poincaré sections at lower energies are spontaneously broken around
Ec , (c) E = 4g is an accumulation point of a geometric cascade of stability transitions
in periodic pendulum solutions and (d) the Jacobi-Maupertuis curvature [35] goes from
being positive to having both signs above E = 4g indicating a remarkable correlation be-
tween geodesic instabilities and the onset of chaos. Intriguingly, this also coincides with
a change in topology of the Hill region of configuration space. The rather sharp transition
to chaos seen in this system is somewhat uncommon among KAM systems where, typi-
cally, invariant tori break gradually as one moves away from the integrable limit. What is
more, we conjecture ergodic behavior in a band of energies slightly above E = 4g . Thus,
the three rotor system furnishes a physically interesting autonomous Hamiltonian system
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potentially displaying global chaos and ergodicity.

15. Invariant tori, action-angle variables and phase space structure of the Rajeev-Ranken
model: The Rajeev-Ranken model [42] introduced in 2016, is a Hamiltonian system with
3 degrees of freedom describing nonlinear waves in a 1+1-dimensional scalar field theory
dual to the SU(2) principal chiral model (PCM). These novel ‘continuous’ waves could
play a role similar to solitary waves in other field theories. Unlike the PCM, the scalar
field theory is strongly coupled in the ultraviolet and serves as a laboratory to study non-
perturbative features of theories with a perturbative Landau pole. In previous work [38],
we showed that the Rajeev-Ranken model is related, but not equivalent, to the Neumann
model [46]. In the present work with T R Vishnu [52], we give its equations a new inter-
pretation as Euler equations for a centrally extended Euclidean algebra with a quadratic
Hamiltonian. Thus, they bear a kinship to Kirchhoff’s equations for a rigid body moving
in a perfect fluid [53, 54]. Solutions of the Rajeev-Ranken model may also be inter-
preted as a special family of flat su(2) connections in 1+1 dimensions. Though analytic
solutions in terms of elliptic functions had been found [42], deeper questions about the
model’s structure and integrability were open. In [38], a degenerate Poisson pencil, Lax
pair, r -matrix and four conserved quantities in involution were found. In this paper, we
use the Casimirs of the Poisson algebra to find all symplectic leaves and Darboux coordi-
nates on them. The system is Liouville integrable on each leaf and the generic common
level sets of conserved quantities are shown to be 2-tori. Going beyond the generic cases,
we find three more types of common level sets: horn-tori, circles and points. They are
related to places where the conserved quantities develop relations and to the degeneration
of solutions from elliptic to hyperbolic and circular. An elegant geometric construction
allows us to realize each common level set as a fibre bundle with base determined by the
roots of a cubic polynomial. By contrast with the dynamics on tori and circles, which is
Hamiltonian, that on horn tori is shown to be a gradient flow. In fact, horn tori behave like
separatrices and are also associated to a transition in the topology of energy level sets. Fi-
nally, by a careful use of the Poisson structure and elliptic function solutions, we discover
a family of action-angle variables for the model. Our new results significantly improve
our understanding of the classical Rajeev-Ranken model and should also be useful in
understanding it quantization.

16. Ergodicity, mixing and recurrence in the three rotor problem: In the classical three
rotor problem, three equal point masses move on a circle subject to attractive cosine po-
tentials of strength g . In the center of mass frame, energy E is the only known conserved
quantity. In earlier work [49, 50], an order-chaos-order transition was discovered in this
system along with a band of global chaos for 5.33g < E < 5.6g . In the present work
with H Senapati [55], we provide numerical evidence for ergodicity and mixing in this
band. The Liouville measure ensemble-average distribution functions of relative angles
and angular momenta are shown to agree with the corresponding time-average distribu-
tions with a power-law approach in time. Moreover, trajectories emanating from a small
volume are shown to become uniformly distributed over the energy hypersurface indicat-
ing that the dynamics is mixing. Outside this band, ergodicity and mixing fail, though
the ensemble-average distributions of momenta show interesting phase transitions from
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Wignerian to bimodal with increasing energy. Finally, in the band of global chaos, the
distribution of recurrence times to finite size cells is found to follow an exponential law
with the mean recurrence time satisfying a scaling law involving an exponent consistent
with global chaos and ergodicity.

17. Nonlinear dispersive regularization of inviscid gas dynamics: Ideal gas dynamics can
develop shock-like singularities with discontinuous density. Viscosity typically regular-
izes such singularities and leads to a shock structure. On the other hand, in 1d, singulari-
ties in the Hopf equation can be non-dissipatively smoothed via KdV dispersion. In [56],
with S S Phatak, S Sachdev and A Thyagaraja, we develop a minimal conservative regu-
larization of 3d ideal adiabatic flow of a gas with polytropic exponent γ . It is achieved by
augmenting the Hamiltonian by a capillarity energy β(ρ)(∇ρ)2 . The simplest capillarity
coefficient leading to local conservation laws for mass, momentum, energy and entropy
using the standard Poisson brackets is β(ρ) = β∗/ρ for constant β∗ . This leads to a
Korteweg-like stress and nonlinear terms in the momentum equation with third deriva-
tives of ρ , which are related to the Bohm potential and Gross quantum pressure. Just
like KdV, our equations admit sound waves with a leading cubic dispersion relation, soli-
tary waves and periodic traveling waves. As with KdV, there are no steady continuous
shock-like solutions satisfying the Rankine-Hugoniot conditions. Nevertheless, in 1d,
for γ = 2 , numerical solutions show that the gradient catastrophe is averted through the
formation of pairs of solitary waves which can display approximate phase-shift scatter-
ing. Numerics also indicate recurrent behavior in periodic domains. These observations
are related to an equivalence between our regularized equations (in the special case of
constant specific entropy potential flow in any dimension) and the defocussing nonlinear
Schrödinger equation (cubically nonlinear for γ = 2), with β∗ playing the role of ~2 .
Thus, our regularization of gas dynamics may be viewed as a generalization of both the
single field KdV and nonlinear Schrödinger equations to include the adiabatic dynamics
of density, velocity, pressure and entropy in any dimension.

18. An introduction to Lax pairs and the zero curvature representation. Lax pairs are a
useful tool in finding conserved quantities of some dynamical systems. In the expository
articles [43, 44, 45] with T R Vishnu, we give a motivated introduction to the idea of
a Lax pair of matrices (L,A) , first for mechanical systems such as the linear harmonic
oscillator, Toda chain, Eulerian rigid body and the Rajeev-Ranken model. This is then
extended to Lax operators for one-dimensional field theories such as the linear wave and
KdV equations and reformulated as a zero curvature representation via a (U, V ) pair
which is illustrated using the nonlinear Schrödinger equation. The key idea is that of re-
alizing a (possibly) nonlinear evolution equation as a compatibility condition between a
pair of linear equations. The latter could be an eigenvalue problem for the Lax operator
L and a linear evolution equation generated by A , for the corresponding eigenfunction.
Alternatively, they could be the first order linear system stating the covariant constancy of
an arbitrary vector with respect to the 1+1 dimensional gauge potential (V, U) . The com-
patibility conditions are then either the Lax equation L̇ = [L,A] or the flatness condition
Ut − Vx + [U, V ] = 0 for the corresponding gauge potential. The conserved quantities
then follow from the isospectrality of the Lax and monodromy matrices.
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19. Quantum Rajeev-Ranken model as an anharmonic oscillator. The Rajeev-Ranken
(RR) model [42] is a Hamiltonian system describing screw-type nonlinear waves of wavenum-
ber k in a scalar field theory pseudodual to the 1+1D SU(2) principal chiral model. Clas-
sically, the RR model is Liouville integrable [38, 52]. With T R Vishnu in [57], we
interpret the model as a novel 3D cylindrically symmetric quartic oscillator with an ad-
ditional rotational energy. The quantum theory has two dimensionless parameters. Upon
separating variables in the Schrödinger equation, we find that the radial equation has a
four-term recurrence relation. It is of type [0, 1, 16] and lies beyond the ellipsoidal Lamé
and Heun equations in Ince’s classification. At strong coupling λ , the energies of highly
excited states are shown to depend on the scaling variable λk . The energy spectrum at
weak coupling and its dependence on wavenumber k in a double-scaling strong coupling
limit are obtained. The semi-classical WKB quantization condition is expressed in terms
of elliptic integrals. Numerical inversion enables us to establish a (λk)2/3 dispersion rela-
tion for highly energetic quantized ‘screwons’ at moderate and strong coupling. We also
suggest a mapping between our radial equation and one of Zinn-Justin and Jentschura
[58, 59] that could facilitate a resurgent WKB expansion for energy levels. In another
direction, we show that the equations of motion of the RR model can also be viewed as
Euler equations for a step-3 nilpotent Lie algebra. We use our canonical quantization to
uncover an infinite dimensional reducible unitary representation of this nilpotent algebra,
which is then decomposed using its Casimir operators.

20. Bifurcation cascade, self-similarity and duality in the 3-rotor problem. The idea that
periodic orbits can serve as a tool in the study of classical systems has been recognized
since the time of Poincaré. On the other hand, bifurcations encode qualitative changes in
a dynamical system and often involve universal behavior. Interestingly, bifurcations of a
family of periodic orbits can be used to find new periodic orbits. The infinite sequence
of period-doubling bifurcations associated with the onset of chaos in the logistic map is
a well-researched example. Bifurcation cascades of periodic orbits have also been dis-
covered in Hamiltonian systems such as Hénon-Heiles. In the latter, the cascade displays
scale-invariance and fan-like structures although the connection to chaos is still unclear.
Thus, it is important to understand the common/distinctive phenomena surrounding such
cascades in other interesting examples. With Ankit Yadav, in [60], we investigate a doubly
infinite sequence of bifurcations at stability transitions in the ‘pendulum’ family of peri-
odic orbits of the 3-rotor system. In the latter, neighboring rotors interact via the cosine
of the relative angle. It arises as a classical limit of a cyclic chain of coupled Josephson
junctions used in superconducting qubits. It displays order-chaos-order behavior with in-
creasing energy along with a seemingly globally chaotic phase in an interval of energies
slightly above the onset of widespread chaos [50]. We develop a search algorithm that
exploits orbital symmetries to find periodic orbits that germinate at fork-like isochronous
and period-doubling bifurcations of pendula. The bifurcations accumulate geometrically
at the energy threshold between librational and rotational pendula. We estimate scaling
exponents that characterize the self-similarity in stability indices of pendula and shapes of
periodic orbits born at the bifurcations. The 3-rotor scaling constants are larger than those
of Henon-Heiles necessitating greater numerical precision to demonstrate self-similarity.
By studying the stability of newly born orbits, we propose a period-doubling analog of
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the isochronous fork-like bifurcation slope theorem. Remarkably, we also discover a du-
ality that relates bifurcation energies and shapes of new periodic orbits in the librational
and rotational phases. Moreover, stability indices of classes of newly born orbits form
forward and backward fans that meet at the self-dual energy, which intriguingly is also
the energy around which widespread chaos sets in. We also apply our search method to
find the family of new periodic orbits born at the only stability transition of another fam-
ily of periodic orbits, the isosceles breathers. This transition is shown to be associated to
a reverse fork-like period-doubling bifurcation. Furthermore, we argue that none of the
infinitely many periodic orbits born at bifurcations of pendula and breathers is stable in
the globally chaotic phase. One hopes that a common framework may be developed to
describe these bifurcation cascades, scaling symmetries, fan-like structures and their pos-
sible implications for chaos in a variety of few-degree of freedom Hamiltonian systems.

21. Screwon spectral statistics and dispersion relation in the quantum Rajeev-Ranken
model. The Rajeev-Ranken (RR) model is a Hamiltonian system describing screw-type
nonlinear waves (screwons) of wavenumber k in a scalar field theory pseudodual to the
1+1D SU(2) principal chiral model. Classically, the RR model based on a quadratic
Hamiltonian on a nilpotent/Euclidean Poisson algebra is Liouville integrable. Upon
adopting canonical variables in a slightly extended phase space, the model was inter-
preted as a novel 3D cylindrically symmetric quartic oscillator with a rotational energy
[57]. In [61], with T R Vishnu, we examine the spectral statistics and dispersion relation
of quantized screwons via numerical diagonalization validated by variational and pertur-
bative approximations. We also derive a semiclassical estimate for the cumulative level
distribution which compares favorably with the one from numerical diagonalization. The
spectrum shows level crossings typical of an integrable system. The ith unfolded near-
est neighbor spacings are found to follow Poisson statistics for small i . Nonoverlapping
spacing ratios also indicate that successive spectral gaps are independently distributed.
After displaying universal linear behavior over energy windows of short lengths, the spec-
tral rigidity saturates at a length and value that scales with the square-root of energy. For
strong coupling λ and intermediate k , we argue that reduced screwon energies can de-
pend only on the product λk . Numerically, we find power law dependences on λ and k
with an approximately common exponent 2/3 provided the angular momentum quantum
number l is small compared to the number of nodes n in the radial wavefunction. On the
other hand, for the ground state n = l = 0 , the common exponent becomes 1.

22. Quantum three-rotor problem in the identity representation. The quantum three-rotor
problem concerns the dynamics of three equally massive particles moving on a circle sub-
ject to pairwise attractive cosine potentials and can model coupled Josephson junctions.
Classically, it displays order-chaos-order behavior with increasing energy. In [62], with
H. Senapati, we initiate the study of the quantum three-rotor problem. It admits a dimen-
sionless coupling with semiclassical behavior at strong coupling. We study stationary
states with periodic ‘relative’ wave functions. Perturbative and harmonic approximations
capture the spectrum at weak coupling and that of low-lying states at strong coupling.
More generally, the cumulative distribution of energy levels obtained by numerical diag-
onalization is well-described by a Weyl-like semiclassical estimate. However, the system
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has an S3 × Z2 symmetry that is obscured when working with relative angles. By ex-
ploiting a basis for invariant states, we obtain the spectrum restricted to the identity rep-
resentation. To uncover universal quantum hallmarks of chaos, we partition the spectrum
into energy windows where the classical motion is regular, mixed or chaotic and unfold
each separately. At strong coupling, we find striking signatures of transitions between
regularity and chaos: spacing distributions morph from Poisson to Wigner-Dyson while
the number variance shifts from linear to logarithmic behavior at small lengths. Some
nonuniversal features are also examined. For instance, for strong coupling, the number
variance saturates and oscillates at large lengths while the spectral form factor displays a
nonuniversal peak at short times. Moreover, deviations from Poisson spacings at asymp-
totically low and high energies are well-explained by quantum harmonic and free-rotor
spectra projected to the identity representation at strong and weak coupling. Interest-
ingly, the degeneracy of free-rotor levels admits an elegant formula that we deduce using
properties of Eisenstein primes.

23. Level crossing instabilities in inviscid isothermal compressible Couette flow. In [63],
with S Sachdev and P Sinha, we study the linear stability of inviscid steady parallel flow
of an ideal gas in a channel of finite width. Compressible isothermal two-dimensional
monochromatic perturbations are considered. The eigenvalue problem governing density
and velocity perturbations is a compressible version of Rayleigh’s equation and involves
two parameters: a flow Mach number M and the perturbation wavenumber k . For an odd
background velocity profile, there is a Z2 × Z2 symmetry and growth rates γ come in
symmetrically placed 4-tuples in the complex eigenplane. Specializing to uniform back-
ground vorticity Couette flow, we find an infinite tower of noninflectional eigenmodes
and derive stability theorems and bounds on growth rates. We show that eigenmodes are
neutrally stable for small k and small M but that they otherwise display an infinite se-
quence of stability transitions with increasing k or M . Using a search algorithm based
on the Fredholm alternative, we find that the transitions are associated to level crossings
between neighboring eigenmodes. Repeated level crossings result in windows of instabil-
ity. For a given eigenmode, they are arranged in a zebra-like striped pattern on the k -M
plane. A canonical square-root power law form for γ(k,M) in the vicinity of a stability
transition is identified. In addition to the discrete spectrum, we find a continuous spec-
trum of eigenmodes that are always neutrally stable but fail to be smooth across critical
layers.
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