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Conservative regularization of compressible dissipationless two-fluid plasmas
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This paper extends our earlier approach [cf. Phys. Plasmas 17, 032503 (2010), 23, 022308 (2016)] to
obtaining à priori bounds on enstrophy in neutral fluids (R-Euler) and ideal magnetohydrodynamics (R-
MHD). This results in a far-reaching local, three-dimensional, non-linear, dispersive generalization of a
KdV-type regularization to compressible/incompressible dissipationless two-fluid plasmas and models derived
therefrom (quasi-neutral, Hall and ideal MHD). It involves the introduction of vortical and magnetic ‘twirl’
terms λ2

l (wl +
ql
ml

B) × (∇ × wl) in the ion/electron velocity equations ( l = i, e ) where wl = ∇ × vl

are vorticities. The cut-off lengths λl must be inversely proportional to the square-roots of the number
densities (λ2

l nl = Cl) and may be taken as Debye lengths or skin-depths. A novel feature is that the
‘flow’ current

∑

l qlnlvl in Ampère’s law is augmented by a solenoidal ‘twirl’ current
∑

l ∇×∇× λ2
l jflow,l .

The resulting equations imply conserved linear and angular momenta and a positive definite swirl energy
density E∗ which includes an enstrophic contribution

∑

l(1/2)λ
2
l ρlw

2
l . It is shown that the equations

admit a Hamiltonian-Poisson bracket formulation. Furthermore, singularities in ∇ × B are conservatively
regularized by adding (λ2

B/2µ0)(∇×B)2 to E∗ . Finally, it is proved that among regularizations that admit
a Hamiltonian formulation and preserve the continuity equations along with the symmetries of the ideal
model, the twirl term is unique and minimal in non-linearity and space derivatives of velocities.

I. INTRODUCTION

Plasma physics finds extensive applications in astro-
physics, physics of fusion devices like tokamaks, stel-
larators and in inertial confinement and in technological
applications1–7. Plasmas have extremely complex dy-
namics when they interact with self-generated and ex-
ternally applied electric and magnetic fields. The dy-
namics of such systems are governed both by Maxwell’s
equations and either a kinetic or fluid model represent-
ing the co-evolution of the plasma variables. In kinetic
descriptions appropriate distribution functions are intro-
duced for the ions and electrons of the plasma. They are
evolved according to equations such as the Boltzmann-
Fokker-Planck system. The charge and current densities
derived from the distribution functions are then used
to evolve the fields. In fluid models only the first few
“principal moments” like the number densities, veloci-
ties, temperatures, stresses and heat fluxes appear. It is
often the case that the fluid description provides a rela-
tively tractable system which can be used to describe a
variety of phenomena actually observed in experiments
and in the cosmos. Among fluid models, the simplest
ones are generalisations of the well-known dissipationless
Euler equations of neutral fluid dynamics to include the
effects of electromagnetic body forces. A typical exam-
ple is provided by the classic model known as Ideal Mag-
neto Hydrodynamics [“ideal MHD”, see, for example,8,9]
which has found very wide application in both fusion
plasma theory and in astrophysical theories. This the-
ory was used by Alfvén to describe plasma waves in a

a)Electronic mail: govind@cmi.ac.in, sonakshi@cmi.ac.in
b)Electronic mail: athyagaraja@gmail.com

magnetised fluid [see the classic text by Stix10] and to
show that in the absence of dissipation [resistivity and
viscosity and possibly thermal diffusivity] the magnetic
field is “frozen” into the flow. This result has wide appli-
cation to both solar physics and to important classes of
instabilities known to occur in tokamak plasmas [“ideal
ballooning and kink modes” op.cit1,2,8,9].

It is generally the case that even the simplest ideal
MHD description involves rather complicated nonlinear
partial differential equations. One does not have use-
ful exact, analytically derived solutions valid for exper-
imentally relevant situations. The only generally ap-
plicable methods are numerical methods. The dissipa-
tionless two-fluid (ion and electron) equations are simi-
lar in their qualitative properties to the Euler equations
of inviscid fluid dynamics and ideal MHD. They pos-
sess several conservation laws but involve energy trans-
fer mechanisms which can lead to short-wavelength sin-
gularities like vortex and current sheets, shocks and
finite-time unbounded behaviour of mean-square vortic-
ity(“enstrophy”) and current density. It is usually the
case that “ultra-violet” singularities of these types are
resolved by viscosity, thermal conductivity and electrical
resistivity. All these are entropy-producing effects and
are not consistent with the conservation properties of the
dissipationless models. Numerical solutions of the con-
servative equations can become singular when evolved.
It is important to distinguish between purely numerical
instabilities which have nothing to do with physical prop-
erties of the system and real physical instabilities. For
these reasons, it is useful to extend methods developed in
our earlier work to ‘regularize’ the Euler and ideal MHD
models to two-fluid plasma models. In this work we de-
scribe this extension which also has more fundamental
applications to the formulation of statistical theories of
the dynamics of the systems considered.

http://arxiv.org/abs/1711.05236v2
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In11–13 new conservative regularizations of incom-
pressible and compressible Eulerian flow and ideal MHD
were introduced. These are three-dimensional nonlinear
dispersive but dissipationless counterparts of the Navier-
Stokes and visco-resistive MHD equations, just as the
KdV equation is a dispersive but inviscid counterpart
of the one-dimensional viscous Burgers equation14. The
primary motivation was to regulate possible vortical sin-
gularities by ensuring an à priori bound on enstrophy.
The guiding principles in the choice of regularizing terms
were that they be local, minimal in non-linearity and
derivatives of velocity v , small enough to leave macro-
scale dynamics unchanged and preserve Galilean, par-
ity and time-reversal symmetries of the ideal equations.
These principles led us to regularized models called R-
Euler and R-MHD that involved a new ‘twirl’ term
λ2 w× (∇×w) in the velocity equation (i.e., Newton’s
law) and a corresponding term ∇× (λ2(∇×w)×B) in
Faraday’s law. These terms correspond to the addition of
a vortical energy density (1/2)λ2ρ w2 to the flow energy
density (1/2)ρv2 . Here w = ∇×v is the vorticity while
ρ is the mass density satisfying the continuity equation.
The regulator λ acts as a short-distance cut-off to the
growth of enstrophy and must satisfy the constitutive
law λ2ρ = constant for a conserved energy to exist. Thus
λ is like a position-dependent mean free path: smaller in
denser regions. Like viscosity (ν∇2v) , the twirl term is
second order in velocity derivatives, but unlike the for-
mer, it is non-linear and non-dissipative. Indeed, the
equations were shown to admit a Hamiltonian-Poisson
bracket formulation and local conservation laws for en-
ergy, linear and angular momenta, flow/magnetic and
cross helicities. Regularized analogues of the Kelvin-
Helmholtz and Alfvén theorems were obtained, demon-
strating that vorticity and magnetic field are frozen into
a swirl velocity v∗ = v + λ2 ∇×w .

In Section II, we extend our local conservative regu-
larization of compressible ideal MHD to non-relativistic
two fluid (ion-electron) plasmas. The extension to multi-
fluid or electron-positron plasmas is relatively straight-
forward. As in R-MHD, the continuity equations are un-
changed while we introduce regularization terms in the
velocity equations for each species ( l = i, e with charges
ql and masses ml ). In addition to the vortical twirl
term wl × (∇ × wl) analogous to the one in R-MHD,
we add a magnetic twirl term (ql/ml)B× (∇×wl) with
a common coupling strength λ2

l . This is similar to the
universal coupling of charged particles to both electric
and magnetic fields through the electric charge. Here λl

are (possibly different) regularizing lengths for the two
species. The two twirl terms are obtained by a judi-
cious replacement of wl by wl + qlB/ml in R-MHD.
The combination w+qB/m also appears elsewhere, no-
tably in the study of plasmas in non-inertial frames15.
The number densities nl and λl must satisfy the consti-
tutive relations λ2

l nl = Cl where Cl must be constant
for a conserved energy to exist. These relations are auto-
matic if λi,e are chosen to be the Debye lengths or skin
depths for ions and electrons, where the ideal equations

are known to breakdown. Gauss (ǫ0∇ · E = ̺ ), Fara-
day (∂B/∂t = −∇ × E ) and Ampère (µ0ǫ0(∂E/∂t) =
∇× B − µ0j∗ ) laws take their usual forms with charge
density given by ̺ =

∑

l qlnl . However, the ‘swirl’
current j∗ = jflow + jtwirl differs from the flow current
jflow =

∑

l qlnlvl by an additional regularization term
jtwirl =

∑

l qlnlλ
2
l∇×wl . The constitutive relations en-

sure that jtwirl =
∑

l ∇ × (∇ × λ2
l jflow,l) is solenoidal,

thus guaranteeing charge conservation: ∂t̺+∇· j∗ = 0.
The constitutive relations and modification of current
jflow 7→ j∗ are crucial for obtaining a conserved ‘swirl’
energy including a vortical contribution for compressible

barotropic flow:

E∗ =

∫





∑

l=i,e

(

1

2
nlml(vl

2 + λ2
lw

2
l ) + Ul(nlml)

)

+
B2

2µ0

+
ǫ0E

2

2

]

dr where ∇U ′

l =
∇pl
mlnl

. (1)

Here pl are the partial pressures. The positive definite-
ness of E∗ along with the constitutive relations ensure
that the kinetic and compressional energies as well as
the enstrophy of each species is bounded, thus helping
to regularize vortical singularities. We also derive local
conservation laws for swirl energy, linear and angular
momenta in our regularized two-fluid model. Unlike in
the single-fluid case, we do not have analogues of con-
served magnetic and cross helicities. When the num-
ber densities ni,e and λi = λe = λ are constants and
the compressional and electric energies are omitted, the
above equations reduce to a conservative regularization
of incompressible quasi-neutral two-fluid plasmas. Inter-
estingly, in the incompressible case alone, if the current
in Ampère’s law is taken to be jflow , we obtain a dif-

ferent conserved energy that includes terms with both
velocity and magnetic field curls:

E∗

inc =

∫

[

∑

l

(

1

2
nml

(

vl
2 + λ2(∇× vl)

2
)

)

+
B2

2µ0

+
λ2

2µ0

(∇×B)2
]

dr. (2)

In Section III a hierarchy of regularized plasma models
is considered. In many physically interesting situations
[eg. tokamak or many astrophysical plasmas2,5] it is rea-
sonable to sacrifice the generality of the full two-fluid
model and assume quasi-neutrality (ni ≈ ne) on scales
larger than the Debye length λD and frequencies less
than the plasma frequency ωp . Additionally, in systems
such as accretion disks and planetary magnetospheres7,
one may even ignore electron inertia effects (Hall MHD).
The passage from our full regularized two fluid model to
the corresponding quasi-neutral, Hall and 1-fluid MHD
models is achieved via the successive limits ǫ0 → 0 (non-
relativistic limit where the displacement current may be
ignored), me → 0 (me/mi ≪ 1) and finally electric
charge e → ∞ with λe/λi → 1 (L ≫ λD and ω ≪ ωp ).
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In each case we have a conserved swirl energy guaran-
teeing boundedness of enstrophy. In the quasi-neutral
limit where c → ∞ , E is non-dynamical. It is deter-
mined from the electron velocity equation rather than
from Gauss’ law:

E = −v∗e×B− ∇pe
en

− me

e

(

∂tve +we × v∗e +
1

2
∇v2

e

)

(3)
where v∗e = ve + λ2

e∇×we is the electron swirl veloc-
ity. The situation is analogous to the determination of
pressure from the divergence of the Euler equation upon
passing to incompressible flow by taking the sound speed
cs → ∞ . In the regularized Hall model where electron
inertia terms are ignored, magnetic helicity

∫

A · B dr
is conserved and in the barotropic case, B is frozen into
v∗e . Finally, when e → ∞ (L ≫ λD ) we recover the
one-fluid R-MHD model (v ≈ vi ≈ ve and λi = λe = λ)
with the magnetic field frozen into the swirl velocity v∗ .

In Section IV the Poisson bracket (PB) formalism
for regularized compressible two-fluid models is dis-
cussed. Interestingly our two-fluid equations follow from
the PBs introduced by Spencer-Kaufman16 and Holm-
Kuperschmidt17 with the swirl energy E∗ taken as the
Hamiltonian. Whilst R-MHD admits a Hamiltonian for-
mulation with the Landau-Morrison-Greene PBs18,19, we
have not identified PBs for the quasi-neutral 2-fluid or
Hall MHD models. Moreover, unlike the Hamiltonian
and equations of motion (EOM), the 2-fluid PBs do not
all reduce to the 1-fluid PBs under the above limiting
processes.

In Section V we exploit the above PB formulation to
propose a way of regularizing magnetic field gradients in
compressible one- and two-fluid plasma models. In stan-
dard tearing mode theory1,2,20 the magnetic field can
have tangential discontinuities associated with current
sheets and reconnection. These current density singu-
larities are usually resolved by resistivity; we propose a
conservative regularization. By analogy with the vorti-
cal energy densities (1/2)λ2

l ρl(∇ × vl)
2 which regular-

izes velocities we add (λ2
B/2µ0)(∇ × B)2 to the swirl

energy E∗ of (1), to prevent B from developing a large
curl. Here λB is a constant cut-off length. The equa-
tions of motion obtained from this Hamiltonian using
the 2-fluid PBs can be put in the same form as before
by replacing µ0j∗ in Ampère’s law with µ0j∗ − λ2

B ∇×
(∇ × (∇ × B)) . On the other hand, the introduction
of such a magnetic curl energy in the 1-fluid Hamilto-
nian adds −(λ2

B/ρµ0)B × (∇ × (∇× (∇×B))) on the
RHS of the velocity equation upon use of the 1-fluid PBs.
In other words, we have a modified Lorentz force term
j∗∗×B where µ0j∗∗ = ∇×B+λ2

B(∇× (∇× (∇×B))) .
These third derivatives of B could smooth large gra-
dients in current and field across current sheets just as
the uxxx term in KdV does across a shock14. Interest-
ingly, XMHD21,22 provides an alternate way of regular-
izing magnetic though not vortical singularities within a
1-fluid setup. Indeed, the XMHD Hamiltonian includes
(∇×B)2 but not (∇×v)2 . Moreover, the resulting reg-

ularization terms in the velocity and Faraday equations
are quite different from ours due to the use of differ-
ent PBs (see §V). Another essential difference is that
the XMHD cut-off lengths di,e (normalized collisionless
skin-depths) are assumed constant unlike our local cut-
offs λi,e .

Section VI presents a discussion of the results ob-
tained. In Appendix A we establish an interesting
uniqueness property of our twirl regularization. We do
this for compressible barotropic neutral flows and in-
dicate the extension to two-fluid plasmas. More pre-
cisely, we show that the twirl term λ2w × (∇ × w) is
unique among local regularization terms that are at most
quadratic in v and with at most three spatial deriva-
tives which preserve Galilean, parity and time-reversal
symmetries while also admitting a Hamiltonian-Poisson
bracket formulation with the standard continuity equa-
tion and Landau-Morrison-Greene PBs. The identifica-
tion and elimination of possible regularization terms is
greatly facilitated by working at the level of the Hamilto-
nian rather than the equations of motion. It allows us to
arrive at the vortical energy term

∫

(1/2)λ2ρw2dr with
λ2ρ constant (> 0) , as the only positive definite regu-
larization term satisfying the foregoing criteria subject
to decaying or periodic boundary conditions.

II. REGULARIZED COMPRESSIBLE 2-FLUID PLASMA

EQUATIONS

The dynamical variables of a 2-fluid plasma are: E ,
B , ion and electron velocities vi,e , number densities ni,e

and partial pressures pi,e . The number densities satisfy
the continuity equations:

∂tnl +∇ · (nlvl) = 0 where l = i or e. (4)

If qi,e denote the ion and electron charges, then the reg-
ularized velocity equations are:

∂tvl+vl · ∇vl = − 1

nlml

∇pl +
ql
ml

(E+ vl ×B)

−λ2
lwl × (∇×wl)−

λ2
l ql
ml

B× (∇×wl). (5)

The mass densities and vorticities are ρl = mlnl and
wl = ∇× vl while λi,e are the short distance cut-offs.
For barotropic flow, (∇pl)/ρl = ∇hl where hl(ρl) are
the specific enthalpies. In this case, the velocity equa-
tions may be written as,

∂tvl +wl × vl = −∇σl +
ql
ml

(E+ vl ×B)

−λ2
l

[

Tw
l +

ql
ml

TB
l

]

. (6)

Here σl = hl+
1
2
v2
l are the specific stagnation enthalpies.

The vortical and magnetic ‘twirl’ regularization terms
for each species are denoted Tw

l = wl × (∇ × wl) and
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TB
l = B × (∇ × wl) . As we will see in §II A 1, conser-

vation of energy requires that the strengths λ2
l of the

vortical Tw
l and magnetic (ql/ml)T

B
l twirl forces must

be the same for a given species. This resembles the uni-
versality of the electric charge ql through which a par-
ticle couples to both electric and magnetic fields. The
short-distance regulators λi,e are assumed to satisfy the
constitutive relations λ2

l nl = Cl where Cl are constants.
We will see that these constitutive relations help to en-
sure that the EOM admit a conserved energy. Here λi,e

need not be equal (they could, for example, be the ion
and electron collisionless skin depths). Yet another way
to express the velocity equations is by introducing the
swirl velocities v∗l = vl + λ2

l∇× wl which allow us to
absorb the regularization terms into the vorticity and
magnetic Lorentz force terms,

∂tvl = −∇σl +
ql
ml

E+ v∗l ×
(

wl +
ql
ml

B

)

. (7)

We will see that wl and B often appear in the combina-
tion wl+qlB/ml (see,

23 and also15). In the latter work,
it is shown how the vorticity and magnetic fields are in-
timately linked in non-inertial frames co-moving with a
fluid. The evolution equations for vorticities are

∂twl +∇× (wl × vl) =
ql
ml

∇× (E+ vl ×B)

−∇×
[

λ2
l

(

Tw
l +

ql
ml

TB
l

)]

(8)

while the Faraday and Ampère evolution equations are

∂B

∂t
= −∇×E and µ0ǫ0

∂E

∂t
= ∇×B− µ0j∗ (9)

with c = 1/
√
µ0ǫ0 . Here the total ‘swirl’ current density

j∗ is related to the velocities and densities of the two
species via the constitutive law

j∗ = j∗i + j∗e where j∗i,e = qi,eni,ev∗i,e. (10)

The regularized ion and electron swirl currents are a sum
of flow and twirl currents for each species

j∗l = jflow,l + jtwirl,l ≡ qlnlvl + qlnlλ
2
l∇×wl. (11)

The constitutive laws λ2
l nl = Cl allow us to write the

twirl currents in manifestly solenoidal form:

jtwirl,l = ∇× (∇× λ2
l jflow,l). (12)

Postulating that the current appearing in Ampère’s law
is j∗ rather than the unregularized jflow allows us to
derive a conserved energy (15) in § II A 1. In addition,
the electric and magnetic fields must satisfy

∇·B = 0 and ǫ0∇·E = ̺ where ̺ = niqi+neqe (13)

is the charge density. The consistency of the inhomoge-
neous Maxwell equations require that j∗ and ̺ satisfy
the local conservation law ∂t̺ + ∇ · j∗ = 0. Our reg-
ularized current does indeed satisfy this condition since
∇ · jtwirl = 0 and by the continuity equations,

∇ · jflow = ∇ ·
∑

l

qlnlvl = −∂t
∑

l

qlnl = −∂t̺. (14)

A. Local conservation laws

In this section, we show that the compressible regular-
ized 2-fluid equations of §II possess locally conserved en-
ergy, linear and angular momenta and identify the corre-
sponding currents. The conservation of energy depends
crucially on the constitutive relations and the modifi-
cation of Ampère’s law to include a regularized ‘twirl’
current in addition to the flow current (11). In the limit
of constant densities ni,e we obtain a locally conserved
energy for incompressible 2-fluid plasmas provided the
regularization lengths λi,e are equal. Interestingly, we
discover another way of regularizing the incompressible
equations, the difference being that it is jflow and not j∗
that appears in Ampère’s law. The resulting conserved
energy shows that velocity as well as field curls are reg-
ularized. However, this approach does not generalize to
the compressible case. Unlike in ideal and twirl regular-
ized 1-fluid MHD, magnetic helicity

∫

A · B dr is not

conserved in the general 2-fluid model. However, it is

conserved in the Hall 2-fluid limit where electron inertia
terms are ignored (§III B). On the other hand, we do not
have a 2-fluid analogue of the conserved cross helicity of
the (regularized) 1-fluid MHD equations.

1. Local conservation of energy

The regularized equations (4), (6) and (9) for
barotropic 2-fluid plasmas obeying the constitutive laws
λ2
l nl = Cl possess a positive definite swirl energy density

E∗ =
∑

l=i,e

[

1

2
ρl(vl

2 + λ2
lw

2
l ) + U(ρl)

]

+
B2

2µ0

+
ǫ0
2
E2

(15)
satisfying a local conservation law ∂tE∗+∇·f = 0 where

f =
∑

l

[

σlρlvl + λ2
l ρlwl ×

(

vl ×wl +
ql
ml

(E+ vl ×B)

−λ2
l

(

Tw
l +

ql
ml

TB
l

))]

+
E×B

µ0

. (16)

With appropriate BCs (E.g. decaying or periodic) the
total swirl energy

∫

E∗dr is a constant of motion. Thus
in addition to the kinetic and potential energies of each
species, their enstrophies

∫

w2
l dr (or vortical energies)

are bounded above. The corresponding kinetic, vorti-
cal and potential energy densities in E∗ will be denoted
KE ,VE and PE . The energy flux may be compactly
written in terms of the swirl velocities vl∗ :

f =
∑

l

[

σlρlvl +E×
(

B

µ0

−∇× λ2
l jflow,l

)

+λ2
l ρlwl ×

(

vl∗ ×
(

wl +
ql
ml

B

))]

. (17)

The first term comes from ideal flow while the second is
the Poynting flux, which is augmented by a regularizing
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term. It may be noted that the combination B−µ0∇×
λ2
l jflow,l also appears in Ampère’s law (9).

Let us sketch the proof of (16), which involves some
remarkable cancellations. To begin we take the dot prod-
uct of the velocity equations (7) for each species with
ρlvl . Since the vorticity and magnetic forces do no work,

1

2
ρl∂tv

2
l = −ρlvl · ∇

(

hl +
1

2
v2
l

)

+ nlqlvl · E

−λ2
l ρlvl ·Tw

l − λ2
l nlqlvl ·TB

l (18)

for each l = i, e . Using (4) we get

∂t(KE l) +
1

2
v2
l ∇ · (ρlvl) + ρlvl · ∇

(

hl +
1

2
v2
l

)

= nlqlvl · E− λ2
l ρlvl ·

[

Tw
l +

ql
ml

TB
l

]

. (19)

Again by the continuity equation,

ρlvl · ∇hl = ∇ · (ρlhlvl)− U ′

l (ρl)∇ · (ρlvl)
= ∇ · (ρlhlvl) + ∂tUl. (20)

Thus the time derivative of the sum of kinetic and po-
tential energy densities of each species is

∂t(KE l + PE l) = −∇ · (σlρlvl) + nlqlvl · E
−λ2

l ρlvl ·
(

Tw
l +

ql
ml

TB
l

)

. (21)

The second term on the RHS is the work done by E .
To write the work done by the twirl regularization forces
in conservation form and introduce the vortical energy
density, we dot the vorticity evolution equation (8) for
each species with λ2

l ρlwl :

∂t (VE l) = λ2
l ρlwl · ∇ ×

[

(vl ×wl) +
ql
ml

(E+ vl ×B)

−λ2
l

(

Tw
l +

ql
ml

TB
l

)]

. (22)

The vector identity for the divergence of a cross product
allows us to write (22) as

∂t(VE l) = λ2
l ρl

[

(vl ×wl) +
ql
ml

(E+ vl ×B)

−λ2
l

(

Tw
l +

ql
ml

TB
l

)]

· ∇ ×wl

+λ2
l ρl∇ ·

[(

vl ×wl +
ql
ml

(E+ vl ×B

−λ2
l

(

Tw
l +

ql
ml

TB
l

))

×wl

]

. (23)

Using the properties of the scalar triple product and re-
arranging, the rate of change of vortical energy density
of each species is

(VE l)t = λ2
l ρlvl ·

[(

wl +
ql
ml

B

)

×∇×wl

]

+λ2
l ρl∇ ·

[[

vl ×wl +
ql
ml

(E+ vl ×B)

−λ2
l

[

Tw
l +

ql
ml

TB
l

]]

×wl

]

+E · ∇ × (λ2
l nlqlwl).(24)

We add (21) and (24), sum over species and identify the
swirl current j∗ from (11). The work done by the twirl
forces λ2

l ρlvl · (Tw
l + (ql/ml)T

B
l ) cancels out giving:

∂t(KE + PE + VE) +
∑

l

∇ ·
[

σlρlvl − λ2
l ρl (vl ×wl

− ql
ml

(E+ vl ×B) + λ2
l

(

Tw
l +

ql
ml

TB
l

))

×wl

]

= E · j∗. (25)

Now we use the regularized Maxwell equations (9) to
calculate the total work done by the electric field

E · j∗ =
E · (∇×B)

µ0

− ǫ0E · ∂tE =
B · ∇ ×E

µ0

+∇ ·
(

B× E

µ0

)

− ∂t

(

ǫ0E
2

2

)

= −∂t

(

ǫ0E
2

2
+

B2

2µ0

)

+∇ ·
(

B×E

µ0

)

. (26)

Evidently it is crucial that the current in Ampère’s law
is taken as the swirl current j∗ instead of jflow to obtain
the local conservation law for swirl energy E∗ (15).

2. Conservation of energy in incompressible flow and

regularization of B

For low acoustic Mach numbers (Ml = |vl/c
s
l |) ≪ 1 ,

the number densities nl are spatially and temporally
constant to leading order. In this limit, the plasma
motions while producing changes in E and B do not
produce propagating EM waves. This is equivalent to
dropping the displacement current in Maxwell’s equa-
tions (c ≫ csl ). For physical consistency we must take
ǫ0 → 0 .

By taking ni,e and the regularizing lengths λi,e to
be constants and ǫ0 → 0 we arrive at an incompress-
ible 2-fluid model. The continuity equations become
∇ · vi,e = 0 and ǫ0 → 0 in Gauss’ law implies quasi-
neutrality (ni ≈ ne ≡ n , assuming qi = −qe) . The
velocity equations are

∂tvl +wl × vl = −∇σl +
ql
ml

(E+ vl ×B)

−λ2
l

(

wl +
ql
ml

B

)

× (∇×wl)(27)

where σl = pl/ρl +
1
2
v2
l for l = i, e . In this limit

Ampère’s law (9) becomes ∇ × B = µ0j∗ . It follows
from §II A 1 that upon dropping compressional and elec-
tric energies, the energy density,

E∗

inc =
∑

l

[

1

2
ρl(vl

2 + λ2
lw

2
l )

]

+
1

2µ0

B2 (28)
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satisfies a local conservation law with the energy current
of (17). As a consequence, the enstrophy of each species
is bounded and velocity curls cannot become too large
though there is no à priori bound on field curls.

Remarkably, (as indicated in Ref.24) there is another
way of defining the regularized incompressible 2-fluid
model (with λi = λe = λ) where the field gradient ∇×B

is also regularized along with ∇ × v . This is achieved
by keeping the velocity (27) and Faraday equations un-
changed but postulating that the current in Ampère’s
law is the flow current jflow = n

∑

l qlvl rather than the
swirl current j∗ (11),

∇×B = µ0 jflow. (29)

Under these circumstances, we find a new conserved en-
ergy density

Ẽ∗

inc =
∑

l

[ρl
2
(vl

2 + λ2w2
l )
]

+
B2

2µ0

+
λ2(∇×B)2

2µ0

(30)

and associated flux

f̃ =
∑

l

[

σlρlvl + λ2ρlwl ×
(

vl∗ ×
(

wl +
ql
ml

B

))]

+
E×B

µ0

+ λ2 [E× (∇× jflow)− jflow × (∇×E)] (31)

satisfying a local conservation law ∂tẼ∗

inc + ∇ · f̃ = 0.
This regularization of incompressible flow is remarkable
in that the L2 norms of v,B,∇ × v and ∇ × B are
all bounded (say with decaying/periodic BCs). Since in
addition, ∇ · vi,e = ∇ ·B = 0, we expect vortical singu-
larities as well as singularities in magnetic field gradients
to be regularized in this model. The L2 -norm of jflow is
also bounded as a consequence of Ampère’s law (29).

To derive Eqs. (30) and (31) we dot the velocity equa-
tions (27) for each species with ρlvl to get,

ρl
2
∂tv

2
l = −ρlvl ·∇σl+nqlvl ·E−λ2

l ρlvl ·
[

Tw
l +

ql
ml

TB
l

]

.

(32)
As ρl are constants and ∇ · vl = 0,

(KE l)t+∇·(σlρlvl) = jflow,l ·E−λ2
l ρlvl ·

[

Tw
l +

ql
ml

TB
l

]

.

(33)
To introduce the vortical energy density, we dot the curl
of (27) for each species with λ2

l ρlwl to get

(VE l)t = λ2
l ρlwl · ∇ ×

[

(vl ×wl) +
ql
ml

(E+ vl ×B)

−λ2
l

(

Tw
l +

ql
ml

TB
l

)]

. (34)

Vector identities allow us to write

(VE l)t = λ2
l ρlvl ·

{(

wl +
ql
ml

B

)

×∇×wl

}

+E · ∇ × (λ2
l nqlwl)

+λ2
l ρl∇ ·

[(

vl ×wl +
ql
ml

(E+ vl ×B)

−λ2
l

(

Tw
l +

ql
ml

TB
l

))

×wl

]

. (35)

Adding (33) and (35) and summing over species we get

∂t(KE + VE) +∇ ·
∑

l

[

σlρlvl + λ2
l ρlwl × (vl ×wl

+
ql
ml

(E+ vl ×B)− λ2
l

(

Tw
l +

ql
ml

TB
l

))]

= E · [jflow + jtwirl] . (36)

where jtwirl =
∑

l ∇×∇×λ2
l jflow,l (12). The work done

by E is got from (29) (abbreviating flow and twirl):

E · jfl = −∂t

(

B2

2µ0

)

+∇ ·
(

B×E

µ0

)

and

E · jtw =
∑

l

[

∇× λ2
l jfl,l · ∇ ×E−∇ · (E×∇× λ2

l jfl,l)
]

=
∑

l

[

λ2
l jfl,l · ∇ × (∇×E)

+ ∇ ·
(

λ2
l jfl,l × (∇×E)−E×∇× λ2

l jfl,l
)]

. (37)

If we assume λi = λe = λ (constant) then
∑

l λ
2
l jfl,l =

λ2jfl = (λ2/µ0)∇×B , so that E · jtwirl becomes

−
(

λ2(∇×B)2

2µ0

)

t

+∇· (λ2jfl× (∇×E)−E×∇×λ2jfl).

(38)
Putting this in (36) we get the conservation of energy

Ẽ∗

inc (30). Notably this trick of replacing j∗ by jflow in
Ampère’s law does not lead to a conserved energy for
compressible flow: λi,e are not constants and cannot be
taken inside the derivatives in (38) to obtain a conserved
energy including (∇×B)2 . As mentioned in §II A 1, for
compressible flow, we must include the twirl current in
Ampère’s law to obtain the conserved swirl energy (15).

3. Local conservation of linear and angular momenta

Returning to the compressible 2-fluid equations, we
obtain a local conservation law ∂tPα+∂βΠ

αβ = 0 for the

total momentum density ~P = ~Pmech+ ~Pfield =
∑

l ρlvl+
ǫ0(E×B) and symmetric stress tensor,

Παβ = pδαβ +
∑

l

[

ρlv
α
l v

β
l + λ2

l ρl

(

w2
l

2
δαβ − wα

l w
β
l

)]

+
1

µ0

(

B2

2
δαβ −BαBβ

)

+ ǫ0

(

E2

2
δαβ − EαEβ

)

. (39)

Here p = pi + pe . The first and last pairs of terms,

Παβ
Euler and Παβ

field in the flux are familiar from ideal flow
and the Poynting flux of electrodynamics. The vortical
regularization term in between is similar to the latter
with the constants λ2

l ρl playing the role of 1
µ0

and ǫ0 .
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To obtain (39), we first multiply the continuity equa-
tion (4) by mlvl and velocity equation (7) by ρl = nlml ,
add them and sum over species to get

∑

l

[(ρlvl)t + ρl(vl · ∇vl) +mlvl∇ · (nlvl)]

= −∇p+
∑

l

[

nlql(E+ vl ×B)− λ2
l ρlwl × (∇×wl)

−λ2
l nlqlB× (∇×wl)

]

. (40)

Using Gauss’ law, ǫ0∇ · E =
∑

l nlql and the formulae
for flow and twirl currents (11) we get

∂tPα
mech + ∂β

∑

l

(ρlv
α
l v

β
l ) = −∇αp+ ǫ0E

α(∇ ·E)

+(j∗ ×B)α −
∑

l

λ2
l ρl(wl × (∇×wl))

α. (41)

From Ampère’s law µ0j∗×B = (∇×B)×B−µ0ǫ0(∂tE)×
B and Faraday’s law we get

∂tPα
mech + ∂βΠ

αβ
Euler = ǫ0E

α ∇ ·E− 1

µ0

(B× (∇×B))α

−ǫ0(∂t(E×B) +E× (∇× E))α

−
∑

l

λ2
l ρl(wl × (∇×wl))

α. (42)

Using the identity (S × (∇ × S))α = 1
2
∂αS2 − Sβ∂βSα

and solenoidal nature of B and w we get

∂tPα + ∂β

[

Παβ
Euler +

1

µ0

(

B2

2
δαβ −BαBβ

)

+
∑

l

λ2
l ρl

(

w2
l

2
δαβ − wα

l w
β
l

)

]

= ǫ0

[

Eα(∇ ·E)− 1

2
∂αE2 + Eβ∂βEα

]

(43)

which implies the local conservation law (39).

The time derivative of angular momentum density
~L = r× ~P = r× (

∑

l ρlvl + ǫ0E×B) is calculated using
the local conservation law for momentum density and
the symmetry of Παβ(39) :

∂Lα

∂t
= ǫαβγrβ∂tPγ = −ǫαβγrβ∂ηΠγη = −∂ηΛαη. (44)

Thus ∂Lα/∂t + ∂βΛαβ = 0 where Λαβ = ǫαγδrγΠδβ is
the angular momentum flux tensor.

III. HIERARCHY OF REGULARIZED MODELS

The regularized compressible 2 -fluid plasma equations
have several free parameters ǫ0,me/mi , electric charge
e and λi/λe . By successively taking ǫ0 → 0 , me/mi →
0 and e → ∞ together with λi/λe → 1 we get the
(regularized) quasi-neutral 2-fluid, Hall and 1-fluid MHD
models.

A. Regularized quasi-neutral 2-fluid plasma

For quasi-neutral plasmas with qi = −qe = e , the
number densities of ions and electrons are approximately
equal, ni ≈ ne = n . The equations of such a plasma
may be formally obtained from the compressible 2-fluid
model (§II) by taking ǫ0 → 0 . Indeed, if ni, ne → n ,
Gauss’ law ∇ ·E = e(ni − ne)/ǫ0 seems to suggest that
∇·E = 0. But in fact, the electric field is not divergence
free (especially on length scales comparable to the Debye
length). We must also let ǫ0 → 0 in such a way that
e(ni − ne)/ǫ0 has a finite limit. The limit ǫ0 → 0 is a
convenient way of taking the non-relativistic limit c =
1/

√
ǫ0µ0 → ∞ (µ0 is a constant) in which vi,e/c ≪ 1 in

the lab frame. In this limit E is not a propagating degree
of freedom and we may ignore the displacement current
term in Ampère’s law (as stated in IIA 2). Furthermore,
E is no longer determined by Gauss’ law but obtained
from the electron velocity equation as discussed below.

In the non-relativistic quasi-neutral limit ǫ0 → 0 , the
Faraday and Ampère-Maxwell equations become

∇·B = 0,
∂B

∂t
= −∇×E and ∇×B = µ0j∗. (45)

For consistency, ∇·j∗ must vanish as we will verify using
the continuity equations

∂tn+∇ · (nvi,e) = 0. (46)

The difference between the continuity equations gives

∇ · n(vi − ve) = 0. (47)

Multiplying by e , we see that the flow current jflow =
en(vi − ve) is solenoidal. On the other hand, the twirl
current jtwirl =

∑

l ∇ × (∇ × λ2
l jflow,l) is always diver-

gence free, so the total current j∗ = jflow + jtwirl for
quasi-neutral plasmas is solenoidal. This also follows
from the Ampère-Maxwell equation when ǫ0 → 0 .

The ion and electron velocity equations (l = i, e) for
quasi-neutral plasmas are

∂tvl+wl×v∗l = −∇pl
mln

−∇v2
l

2
± e

ml

(E+v∗l×B). (48)

E is determined from the electron velocity equation:

Eqn = −v∗e×B−∇pe
en

−me

e

[

∂tve +we × v∗e +
∇v2

e

2

]

.

(49)
The relation between general and quasi-neutral 2-fluid
plasmas bears a resemblance to that between compress-
ible and incompressible barotropic neutral flows. In com-
pressible flow, pressure p is obtained from density ρ us-
ing the barotropic relation. Similarly, in general 2-fluid
plasmas E is determined in terms of the charge density
from Gauss’ law. On the other hand, in the incompress-
ible (∇ ·v = 0) constant density (ρ = ρ0) limit, p is no
longer determined by the barotropic relation but from
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the Poisson equation [∇2p = −ρ0∇ · (v · ∇v)] obtained
by taking the divergence of the velocity equation. Sim-
ilarly, in quasi-neutral plasmas, E is determined from
the electron velocity equation rather than from Gauss’
law. Moreover, ǫ0 → 0 (c → ∞ ) is like taking the Mach
number to zero (sound speed cs → ∞ ).

In this limit, the electric term drops out of the con-
served swirl energy for barotropic flow generalizing (28):

E∗

qn =
∑

l=i,e

(

ρlvl
2

2
+ Ul(ρl) +

λ2
l ρlw

2
l

2

)

+
B2

2µ0

. (50)

Here ρl = mln and ∇U ′

l = ∇hl = ∇pl/ρl for l = i, e .

B. Regularized Hall MHD without electron inertia

In the limit me/mi ≪ 1 we drop electron inertia terms
to get the regularized Hall model. The Maxwell equa-
tions, continuity equations and ion velocity equation are
as in the quasi-neutral theory (§III A). In (49) we drop
electron inertia terms to get

EHall = −v∗e ×B− ∇pe
en

(51)

For barotropic flow, where ∇pe/n is a gradient, Fara-
day’s law becomes ∂tB = ∇× (v∗e×B) . Thus unlike in
the full 2-fluid model, in the R-Hall model the magnetic
field is frozen into the electron swirl velocity.

We have an additional conserved quantity: magnetic
helicity satisfies the local conservation law

∂t(A ·B) +∇ ·
(

φB+EHall ×A− 2h̃eB

e

)

= 0. (52)

Here φ is the scalar potential and we assume the
barotropic condition (∇pe)/n = ∇h̃e . To obtain (52),
we use the homogeneous Maxwell equations and E =
−∇φ− ∂tA to compute

(A ·B)t = −B · ∇φ−B ·E−A · ∇ ×E

= −∇ · (φB+E×A)− 2E ·B. (53)

Using the quasi-neutral electric field (49) we get

(A ·B)t = −∇ · (φB+Eqn ×A) + 2(v∗e ×B) ·B
+2

[∇pe
en

+
me

e

{

∂tve +we × v∗e +
1

2
∇v2

e

}]

·B

= −∇ ·
[

φB+Eqn ×A− 2h̃eB

e

]

+
2me

e

[

∂tve +we × v∗e +
∇v2

e

2

]

·B. (54)

When electron inertia terms are ignored, we see that
Eqn → EHall and magnetic helicity satisfies the local
conservation law (52). The regularization enters through
the electron ‘swirl’ velocity v∗e in (51).

However, even in the Hall (me → 0) limit, we do not
have an analogue of a conserved cross helicity v ·B of R-
MHD. For instance, using the electron velocity equation
(48) and the homogeneous Maxwell equations we find

∂t(ve ·B) = −ve · ∇ ×E−∇ · (σeB)

+B · v∗e × (∇× ve)−
e

me

E ·B. (55)

Substituting for Eqn (49), combining terms and taking
me → 0 , we find that unlike for magnetic helicity, the
final offending term is not suppressed by me .

(ve ·B)t + ∇ · (v∗e(ve ·B))
= B · (∂tve +we × v∗e +∇(ve · v∗e)) .(56)

C. From R-Hall to 1-fluid R-MHD when e → ∞

To get the regularized 1-fluid MHD model of Ref.12

from the above R-Hall 2-fluid model we let e → ∞ ,
holding λi and λe fixed. The limit e → ∞ is a con-
venient way of restricting attention to frequencies small
compared to the cyclotron ωc,l = eB/ml and plasma

ωp,l =
√

nle2/mlǫ0 frequencies and to length scales large

compared to the Debye lengths λD,l =
√

kBTlǫ0/nle2 ,

gyroradii rl = vth,l/ωc,l =
√
kBTlml/eB and collision-

less skin depths δl = c/ωp,l =
√

ml/µ0nle2 .

To switch to one-fluid variables we express vi and ve

in terms of center of mass velocity v = (mivi+meve)/m
and jflow = en(vi − ve)

vi,e = v ± me,i

m

jflow

en
. (57)

Here m = mi + me . The continuity equation ∂tρ =
−∇ · (ρv) for the total mass density ρ = nm is ob-
tained by taking a mass-weighted average of the conti-
nuity equations in (46)

∂t((mi +me)n) = −∇ · (nmivi + nmeve) (58)

The evolution equation for the center of mass velocity v

is similarly obtained from (48),

vt +
mi

m
wi × v∗i +

me

m
we × v∗e = − 1

nm
∇(pi + pe)

− 1

2m
∇(miv

2
i +mev

2
e) +

e

m
(v∗i − v∗e)×B. (59)

Neglecting terms of order me/m ≪ 1 and introducing
j∗ = en(v∗i − v∗e) and p = pi + pe we get

∂tv +wi × v∗i = −1

ρ
∇p− 1

2
∇v2

i +
1

ρ
(j∗ ×B). (60)

Next we take the limit e → ∞ in (57) keeping jflow finite
so that v,vi and ve are all equal, as are w,wi and we .
Defining λ = λi , v∗i = v∗ = v + λ2∇×w . Thus, we
arrive at the velocity equation for one-fluid R-MHD,

∂tv +w × v∗ = −1

ρ
∇p− 1

2
∇v2 +

1

ρ
(j∗ ×B). (61)
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However unlike in the 2-fluid model j∗ is no longer given
by en(v∗i −v∗e) . Instead, it is obtained from Ampère’s
law µ0j∗ = ∇ × B . On the other hand, taking the
limit e → ∞ in the Hall electric field (51) the pressure
gradient term drops out and we get

E1−fluid = −v∗e ×B = −v∗ ×B. (62)

This identification of v∗e with the 1-fluid swirl velocity
v∗ requires that λe = λ . Thus, to get the 1-fluid R-
MHD model we need to take λi = λe = λ . Finally,
Faraday’s law (45) becomes ∂tB = ∇×(v∗×B) implying
that the solenoidal B is frozen into v∗ .

IV. POISSON BRACKETS FOR REGULARIZED

COMPRESSIBLE TWO-FLUID PLASMAS

Poisson brackets for (unregularized) two-fluid plasmas
were proposed by Spencer and Kaufman16 and Holm and
Kuperschmidt17. The non-trivial PBs are given by

{vαl (x), vβl (y)} =
ǫαβγ

mlnl

(

wγ
l +

qlB
γ

ml

)

δ(x − y),

{vl(x), nl(y)} = {nl(x),vl(y)} =
1

ml

∇yδ(x − y),

{Eα(x), Bβ(y)} =
ǫαβγ

ǫ0
∂yγδ(x− y) and

{vαl (x), Eβ(y)} =
ql

mlǫ0
δαβδ(x− y). (63)

Here, l = i, e labels species while α, β, γ label Cartesian
components. The velocity PBs for a given species are
obtained from the Landau PBs {vα, vβ} = ǫαβγwγδ(x−
y)/ρ of fluid mechanics by replacing w by w + qB/m
and ρ by mn for each species. This is reminiscent of the
results established in15, already mentioned. Similarly,
{vl, nl} is obtained from Landau’s PB {v(x), ρ(y)} =
∇yδ(x− y) . The rest of the PBs vanish {B(x),B(y)} =
{vl,B} = {B, nl} = {E, nl} = {E,E} = {nl, nl′} =
{vi,ve} = {ve, ni} = {vi, ne} = 0. In particular,
unlike in 1-fluid MHD12,18,19, velocities and B com-
mute. Vorticity behaves in a manner similar to B :
{wl, nl′} = {wl,B} = 0; {E,wl} is similar to {E,B} :

{Eα(x), wβ
l (y)} =

ǫαβγql
ǫ0ml

∂yγδ(x− y). (64)

Our twirl regularization is natural in the sense that the
regularized equations follow from these PBs with the
swirl energy (15) as Hamiltonian. We sketch how this
happens. It follows from the PBs that only the kinetic
energies contribute to the continuity equations,

∂tnl(x) = {nl,KEl} =

∫

mlnlvl · {nl(x),vl(y)}dy

=

∫

nlvl · ∇yδ(x− y) = −∇ · (nlvl). (65)

To obtain the velocity equations we note that the follow-
ing relations hold for the electric (EE), kinetic (KE l ),

compressional (PE l ) and vortical (VE l ) energies:

{vl(x),EE} = ǫ0

∫

Eβ(y){vl(x), E
β(y)}dy =

ql
ml

E,

{vl(x),PEl} =

∫

U ′

l{vl(x), ρl(y)}dy = −∇U ′

l = −∇hl,

{vl(x),KEl} =

∫

(

ρlv
β
l (y){vl(x), v

β
l (y)}

+
v2
l

2
{vl(x), ρl(y)}

)

dy

= vl ×
(

wl +
qlB

ml

)

− 1

2
∇v2

l and

{vαl (x),VEl} = λ2
l ρl

∫

wβ
l (y)ǫβγδ∂yγ{vαl (x), vδl (y)}dy

= −ǫαηδλ
2
l

(

wη
l +

qlB
η

ml

)

ǫδγβ∂γw
β
l

= −λ2
l

[(

wl +
qlB

ml

)

× (∇×wl)

]α

. (66)

Thus, using σl = hl+
1
2
v2
l , we get the velocity equations

(6) for l = i, e . If {vi, ne} 6= 0, the electron pressure
would contribute to the ion velocity equation. Faraday’s
law receives a contribution only from the electric energy:

∂tB(x) = ǫ0

∫

E(y) · {B(x),E(y)} dy = −∇×E. (67)

Only KE, VE and magnetic energy (ME) contribute to
Ampère’s law:

{E(x),KEl} = ml

∫

nlv
α
l {E(x), vαl (y)}dy = − jflow,l

ǫ0
,

{E(x),VEl} = λ2
l nlml

∫

wα
l {E(x), wα

l (y)}dy

= −λ2
l nlql
ǫ0

(∇×wl) = − jtwirl,l

ǫ0
and

{E(x),ME} =

∫

Bα

µ0

{E(x), Bα(y)}dy =
∇×B

µ0ǫ0
. (68)

Combining, we see that the swirl current j∗ in Ampère’s
law is the sum of flow and twirl currents:

∂tE = − 1

ǫ0

∑

l

(jflow,l + jtwirl,l) +
1

µ0ǫ0
∇×B. (69)

V. REGULARIZATION OF ∇×B IN SINGLE AND

TWO-FLUID MODELS

The twirl terms wl × (∇ × wl) and B × (∇ × wl)
in the EOM and the corresponding vortical energies
1
2
λ2
l nlmlw

2
l can smooth out large velocity gradients and

regularize vortical singularities. Similarly, we would like
to identify appropriate terms in the EOM to regularize
magnetic field gradients and current sheets. Recall from
§II A 2 that in the quasi-neutral incompressible case the
term (λ2/2µ0)(∇×B)2 automatically arose in the con-
served energy if the current in Ampère’s law is chosen
to be the flow current jflow and λi = λe = λ . This
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approach however does not generalize to compressible
flow. In the compressible case, the current in Ampère’s
law must be the swirl current j∗ to guarantee energy
conservation. On the other hand, the Poisson bracket
formulation gives us a natural way of introducing field
gradient energies in compressible flow. Adding the sim-
plest possible positive definite magnetic gradient energy
(MGE) term

∫

λ2
B(∇ ×B)2/2µ0 dr to the Hamiltonian

of the single and 2-fluid models and using the relevant
PBs to obtain the EOM, we ensure the L2 boundedness
of ∇×B .

A. Regularization of ∇×B in R-MHD

We augment the R-MHD Hamiltonian with a magnetic
gradient energy taking λB to be a constant cut-off length

H =

∫
[

ρv2

2
+ U +

λ2ρw2

2
+

B2

2µ0

+
λ2
B

2µ0

(∇×B)2
]

dr.

(70)
Using the non-trivial 1-fluid PBs18,19, {ρ(x),v(y)} =
∇yδ(x− y) ,

{vα(x), vβ(y)} =
ǫαβγwγ

ρ
δ(x − y) and

{vα(x), Bβ(y)} =
ǫαγσǫβησ
ρ(x)

Bγ(x)∂xηδ(x− y), (71)

the continuity and Faraday equations are unchanged

∂tρ+∇ · (ρv) = 0 and ∂tB = ∇× (v∗ ×B). (72)

On the other hand, the velocity equation is modified by

{vα(x),MGE} =
λ2
B

2µ0

∫

{vα(x), (∇×B)2}dy

=
λ2
B

µ0ρ
ǫjklǫαmnǫlpnBm∂xp

∫

[

(∇×B)j∂ykδ(x − y)
]

dy

= − λ2
B

ρµ0

[B× (∇× (∇× (∇×B)))]α . (73)

Combining this with contributions from kinetic, poten-
tial, vortical and magnetic energies, the velocity equa-
tion takes the same form as (61) with j∗ replaced by the
regularized ‘magnetic swirl’ current

µ0j∗∗ = ∇×B+ λ2
B∇× (∇× (∇×B))

= (1− λ2
B∇2)(∇×B). (74)

Evidently, µ0j∗∗ is the magnetic analogue of v∗ = v +
λ2∇ × (∇ × v) . Furthermore, ∇ × B is a smoothed
version of the regularized current obtained through the
application of the integral operator (1− λ2

B∇2)−1 :

∇×B = µ0(1 − λ2
B∇2)−1 j∗∗. (75)

A similar smoothing operator appears in the non-local

Euler-α equations25. As noted in the introduction, these
additional terms in the velocity and Faraday equations

are quite different from those that appear in XMHD21,22.
The latter involves the introduction of a B∗ = B+d2e∇×
((∇×B)/ρ) where de is a constant normalized electron
skin depth, rather than a swirl current j∗∗ . For instance,
this leads to a new term j × B∗ in both the velocity
equation and in the electric field in XMHD.

B. Regularization of field curl in the two-fluid model

As for the single fluid, we augment the 2-fluid Hamil-
tonian (15) with a magnetic gradient energy:

H =

∫

[

∑

l

(

1

2
mlnl

(

v2
l + λ2

lw
2
l

)

+ Ul(ρl)

)

+
B2

2µ0

+
ǫ0E

2

2
+

1

2µ0

λ2
B(∇×B)2

]

dr. (76)

Like before, λB is a constant cut-off length. Using the
2-fluid PBs of §IV, we see that the momentum, con-
tinuity and Faraday equations remain unchanged since
vi,ve, ni, ne and B commute with the magnetic field.
We do not introduce a (∇×E)2 term in H as it would
modify Faraday’s law. The evolution equation for the
electric field is modified by the term:

{E(x),MGE} =
λ2
B

µ0ǫ0
∇× (∇× (∇×B)) = − jB

ǫ0
. (77)

Combining with (68), Ampère’s law (69) becomes

µ0ǫ0∂tE = ∇×B− µ0j∗ − µ0jB. (78)

Here, j∗ = jflow + jtwirl . Now, we can define a new
current density j∗∗ = j∗ + jB . Note that (77) implies
∇ · jB = 0. Thus jB and jtwirl are like magnetization
currents in material media/plasmas. We notice that the
introduction of the MGE in the Hamiltonian has appar-
ently very different effects in the single and two-fluid
models. In the former, the velocity equation is modified
while it is the Ampère equation that is modified in the
latter. However, the two are closely related. In fact,
upon taking the limits ǫ0 → 0,me → 0 and e → ∞ , the
2-fluid current density j∗∗ exactly matches the magnetic
swirl current (74) appearing in the Lorentz force term of
the single fluid velocity equation.

VI. DISCUSSION

In this paper, we have extended the conservative twirl
regularization of our earlier work11–13 to dissipationless
compressible two-fluid plasmas. This involves vortical
and magnetic twirl terms λ2

l (wl +
ql
ml

B) × (∇×wl) in
the velocity equations for ions and electrons. We find
that λ2

l nl must be constant for energy conservation,
so that λl behaves likes λD or c/ωp,l . The key dif-
ference between the regularized and unregularized two-
fluid models is that the flow current jflow =

∑

l qlnlvl
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in Ampère’s law is augmented by a solenoidal ‘twirl’
current

∑

l ∇ × (∇ × λ2
l jflow,l) analogous to magneti-

zation currents in material media. This leads to locally
conserved momenta and a positive definite swirl energy
E∗ . In addition to kinetic, compressional and electro-
magnetic contributions, E∗ includes a vortical energy
density

∑

l λ
2
l nlmlw

2
l , thus placing an à priori upper

bound on the enstrophy of each species. It is notewor-
thy that our twirl-regularized two-fluid equations follow
from the Hamiltonian E∗ using unchanged the Poisson
brackets of16,17. This PB formalism shows that among
regularizations preserving the continuity equations and
symmetries of the ideal system, our twirl regularization
terms are unique and minimal in non-linearity and space
derivatives of velocities. It is also employed to regularize
magnetic field curls in the compressible models by adding
(λ2

B/2µ0)
∫

(∇×B)2 dr to E∗ so that field and velocity
curls are L2 -bounded. By taking suitable successive lim-
its we get a hierarchy of compressible and incompressible
regularized plasma models (quasi-neutral two-fluid, Hall
and 1-fluid MHD). Interestingly, in the incompressible
two-fluid case alone, it is also possible to choose the cur-
rent as jflow , which leads to a conserved swirl energy that
automatically includes a (λ2/2µ0)

∫

(∇×B)2 dr term in
E∗ . Furthermore, the assumption of local short-distance
cut-offs λi,e limits the number of effective degrees of free-
dom, thus considerably extending results on the CHM
model26 to the full 3-D two-fluid equations. This feature
is crucial to numerical modeling of conservative plasma
dynamics and consequently provides a viable framework
to investigate statistical theories of turbulence in these
systems. While we have regularized vortical and field sin-
gularities, there remains the question of conservatively
regularizing density/pressure gradients in shocks. This
requires additional terms12 in the Hamiltonian which
could alter the continuity and energy equations analo-
gous to the KdV-type regularization of the kinematic
wave equation in one-dimension.

A natural question concerns the effect of our twirl reg-
ularization in specific fluid and plasma systems of in-
terest. We have examined this in a few representative
steady flows12,13: a rotating columnar vortex and its
extension to MHD, a vortex sheet, compressible plane
flow, channel flow and variants of Hill’s vortex. In all
these steady flows, the non-linear regularized equations
are under-determined as in ideal Euler or ideal MHD.
For instance, in our rotating columnar vortex model for
a tornado12 with core radius a , the equations determine
the density if the vorticity distribution is prescribed. In
a layer whose width can be of order the regularization
length λ ≪ a , the vorticity smoothly drops from its
value in the core to that in the periphery. We find that
the regularization relates this decrease in vorticity to a
rise in density. On the other hand, vorticity is allowed to
have an unrestricted jump across the layer in the unreg-
ularized model while ρ is continuous and its increase is
unrelated to the drop in vorticity. Similarly, the regular-
ization can smooth the vorticity in a magnetized colum-
nar vortex12. Given vorticity and current profiles, the

density profile is determined. While the Lorentz force
tends to pinch the column, the twirl force points out-
wards for radially decreasing vorticity. An analogue of
Hill’s vortex, a cylindrical vortex in pipe-like flow was
considered in Reference13. The flow is irrotational out-
side an infinite circular cylinder of radius a with vortic-
ity purely azimuthal inside the cylinder. The regularized
equations with appropriate BCs were solved numerically
and unlike in the unregularized case, the vorticity was
found to be continuous across r = a . In modeling a vor-
tex sheet12, we found steady solutions to the regularized
equations that smooth discontinuous changes in vorticity
over a layer of thickness & λ . A regularized analogue of
a Bernoulli-like equation implies a reduction in density
on the sheet compared to its asymptotic values: depend-
ing on the relative flow Mach number, the decrease can
be significant when the thickness of the sheet is com-
parable to the regulator λ . These examples show that
twirl-regularized steady flows can be more regular than
the corresponding ideal ones. They also serve as a start-
ing point for numerical simulations of time-dependent
flows. An interesting example that is currently under in-
vestigation concerns the effect of our regularizations on
the growth of perturbations to vortex/current sheets and
their non-linear saturation. A problem of fundamental
importance is the initial value problem in 3D, say with
periodic BCs. We would like to numerically simulate the
regularized equations and determine the spectral distri-
bution of energy and enstrophy over long times.
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Appendix A: Minimality of twirl regularization in

Hamiltonian formulation

Here we address the question of minimal-
ity/uniqueness of the twirl regularization, firstly in
the context of neutral flows. We show that the twirl
term λ2w × (∇ × w) is the minimal symmetry-
preserving conservative regularization term that can
be added to the Euler equation while retaining the
usual continuity equation and standard Hamiltonian
formulation. The Euler equation is invariant under
space-time translations, rotations, time reversal T and
parity P . We seek regularization term(s) involving
ρ , v and derivatives of v that may be added to the
Euler equation while preserving these symmetries. Any
such term must be even under T , odd under P , not
involve either r or t explicitly, and transform as a
vector under rotations. Furthermore, we seek terms
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with as few spatial derivatives, no time derivatives and
as low a non-linearity in v as possible. The term must
preferably involve a (possibly dynamical) length λ that
can play the role of a short-distance cut-off. However,
there are very many such terms even if we restrict to
those quadratic in v with at most three derivatives [E.g.
λ2w× (∇×w), λ2(w · ∇)w or λ2ǫijk∂jwl∂lvk ] and it is
an arduous task to identify all of them. We may simplify
our task by requiring that the regularized equations fol-
low from a Hamiltonian and the standard Landau PBs.
Thus we seek a positive definite regularization term HR

involving v and its derivatives (dependence on ρ is then
fixed by dimensional arguments) that may be added to
the ideal Hamiltonian density HI = (1/2)ρv2 + U(ρ) .
The possibility of including derivatives of ρ in HR will
be considered elsewhere. The advantage of working with
the Hamiltonian is that we need only consider scalars
rather than the more numerous vectors [regularizations
that do not admit a Hamiltonian-PB formulation would
however not be identified by this approach]. Due to
the PB structure ({v,v} ∝ ∂v) , the number of spatial
derivatives in the velocity equation vt = {v, H} is one
more than that in H and the degree of non-linearity
in v is the same as in H . Thus, HR(vi, ∂jvi, . . .)
must be a P and T -invariant scalar with a minimal
number of derivatives and minimal non-linearity in v .
It would be natural to ask that HR be non-trivial in the
incompressible limit, so that it may regularize vortical
singularities in such flows. However, we find that such
a restriction is not necessary. On the other hand, we
do require that the regularization leave the continuity
eqaution ρt = {ρ,H} = −∇ · (ρv) unaltered i.e.,
{ρ,HR} = 0, assuming decaying or periodic boundary
conditions (BCs) in a box. Now, for HR to be P -even,
the sum of the number of spatial derivatives and degree
of non-linearity in v must be even. T -invariance as well
as positive definiteness require that the degree of HR in
v be even. Thus we begin by listing all scalars at most
quadratic in v with at most two derivatives. They are
obtained by picking coefficient tensors Cijk... below as
linear combinations of products of the rotation-invariant
tensors δij and ǫijk :

1v, 1∂ : Cij∂ivj = δij∂ivj = ∇ · v,
1v, 2∂ : Cijk∂i∂jvk = ǫijk∂i∂jvk = 0,

2v, 0∂ : Cijvivj = δijvivj = v2,

2v, 1∂ : Cijkvi∂jvk = v ·w;Cijk∂i(vjvk) = 0. (A1)

T -invariance eliminates ∇ · v , P -invariance eliminates
v · w while v2 is already present in HI . Thus we are
left with quadratic scalars with two derivatives:

Cijklvi∂j∂kvl = (c1 + c3)v · ∇(∇ · v) + c2v · ∇2v

Cijkl∂ivj ∂kvl = c4(∂ivj)
2 + c5∂ivj ∂jvi + c6(∇ · v)2

Cijkl∂i∂j(vkvl) = c7∇2v2 + (c8 + c9)(2v · ∇(∇ · v)
+(c8 + c9)((∇ · v)2 + ∂ivj ∂jvi).(A2)

Here, Cijkl has been written as a linear combination
of the products δijδkl , δilδjk and δikδjl . Note that
the order of indices in Cijk··· does not matter: E.g.,

the space of scalars spanned by Cijkl∂i∂j(vkvl) and
Cljki∂i∂j(vkvl) are the same. The coefficients in the
linear combination must be functions of ρ alone and
on dimensional grounds must be constants cn = λ2

nρ
where λn are position-dependent short-distance cut-
offs. The identity ∇2v2 = 2v · ∇2v + 2(∂ivj)

2 im-
plies there are only five such linearly independent scalars.
Since enstrophy density w2 = (∂ivj)

2 − (∂ivj)(∂jvi) is
a physically interesting linear combination, it is conve-
nient to choose the basis for such scalars as S1 = w2 ,
S2 = v · ∇2v , S3 = (∂ivj)(∂jvi) , S4 = (∇ · v)2 and
S5 = v · ∇(∇ · v) . We will now argue that w2 is the
only independent regularizing term. Consider first the
incompressible case where S4 = S5 = 0. Integrating by
parts,

∫

S3dr = 0 for decaying/periodic BCs. Further-
more,

∫

S2 dr =
∫

v · [∇(∇ · v) −∇×w] dr =
∫

w2dr .
Thus for incompressible flow we have shown that λ2ρw2

is the only independent, positive definite (λ2ρ > 0) ,
Galilean-invariant regularization term. For compressible
flow, we will not consider regularizations that alter the
continuity equation, leaving that possibility for the fu-
ture. Thus we require {ρ,HR} = 0. Since {ρ,w} = 0,
the term w2 will not affect the continuity equation. On
the other hand, the four other possibilities do modify it:

{ρ,
∫

(S3 , S4 , −S2 , −S5) dr} = 2∇2(∇ · v). (A3)

To preserve the continuity equation, we may consider
sums or differences of the above terms. Thus we replace
the S1,··· ,5 basis with the new basis S̃1 = w2 , S̃2 =

v · ∇2v + (∂ivj)(∂jvi) , S̃3 = v · ∇2v + (∇ · v)2 , S̃4 =

v ·∇(∇·v)+(∂ivj)(∂jvi) and S̃5 = v ·∇(∇·v)+(∇·v)2 .
As before,

∫

S̃2 dr =
∫

S̃3 dr = −
∫

w2 dr and
∫

S̃4 dr =
∫

S̃5 dr = 0. Subject to these BCs, we have shown that
HR =

∫

λ2ρw2 dr is the only positive-definite velocity-
dependent regularizing term in the Hamiltonain that (a)
preserves parity, time-reversal, translation, rotation and
boost symmetries of the system, (b) does not alter the
continuity equation and (c) involves at most two spatial
derivatives and is at most quadratic in v . We conclude
that with the standard PBs, the twirl term −λ2w ×
(∇×w) with the constitutive relation λ2ρ = const., is
the only possible regularizing term in the Euler equation
that is at most quadratic in v with at most 3 derivatives
while possessing properties (a) and (b).

Extending these arguments to 2-fluid plasmas, we may
add a linear combination of w2

i , w
2
e and wi ·we to the

Hamiltonian density. The cross term wi · we leads to
direct interspecies interaction in the velocity equations
which we wish to avoid, preferring the ions and electrons
to interact via the electromagnetic field. Thus we are left
with w2

i and w2
e which lead to the vortical energies of

ions and electrons considered in §II.
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