
O   

Madhavan M, Gautham S R, S P S

T R

Chennai Mathematical Institute

August 

Abstract

In this thesis we explore bounded representations for version vectors which are used to decide the
most up to date replica in an eventually consistent system. We look at an existing bounded rep-
resentation and reason about its correctness using a partial order framework. We use the insights
from this analysis along with a solution for the gossip problem to come up with a more efficient
bounded representation of version vectors.



Contents

 Introduction 

 Version vectors 
. Definitions . 
. Version vector matrix . 
. Version vector slices . 

 Traces - An Introduction 
. Traces of runs . 
. Ideals . 

 Version Vector Matrices and Trace-events 
. Relationship between Version vector matrix entries and trace events 
. Primary and secondary update events . 

 Bounding the version vectors: a la [AAB] 
. Bounded Representation . 
. Complexity of our solution . 
. A critique of the solution . 

 Bounding the version vectors: Using gossip 
. A more efficient bounded representation . 
. Gossip problem: Recap of the results . 
. Labelling . 
. Complexity of our Solution . 

 Conclusion and Summary 





Introduction

Brewer’s CAP eorem [GL] states that distributed systems which are required to be highly avail-
able and partition tolerant cannot guarantee that the replicas are strongly consistent. In such cases,
such systems make do with weaker notions of consistency. A popular weaker notion of consistency
is eventual consistency, which allows for the states of the replicas to diverge for a finite (but not
necessarily bounded) period of time with a guarantee that the states will eventually converge. e
properties of such eventually consistent systems have been studied in [SS].

e replicas in an eventually consistent systems perform updates locally and propagate the up-
dates through mechanisms which include epidemic propagation and pairwise synchronization. When-
ever a subset of replicas participate in the exchange of their knowledge about the local states of other
replicas in the system, they require a mechanism to decide which amongst the partipants has the
most updated information pertaining to every other replica in the system. Version vectors play an
important role in this decision-making process.

A typical implementation of version vectors uses integer counters, which grow with time and
thus are not bounded. However, we observe that given two replicas a and b with their states ra and
rb , respectively, there can be only four possible relationships between them.

. ra is more up to date than rb .

. rb is more up to date than ra.

. ra and rb cannot be compared since they have received concurrent updates.

. ra is the same as rb .

Moreover, when these two replicas participate in pairwise synchronization, they jointly derive the
new version vector that captures their state merger by locally comparing their respective version
vectors.

e bounded number of relations they capture, and the fact that they can be locally computed
without the need for the global view, provides the motivation to seek the existence of a finite rep-
resentation for version vectors. One such finite representation for version vectors was presented in
[AAB].

For the first part of this thesis, we follow the presentation of [AAB]. In that part, we also
introduce the trace framework using which we shall reason about the properties of the bounded
representation proposed in that paper. In the second part of the thesis, we shall use this gossip
framework to provide an alternative bounded representation for version vectors.





Version vectors

. Definitions

Consider an eventually consistent distributed system with N replicas {r0, r1, . . . , rN−1}. Having
initialized themselves by executing the initialization operation I , each of the replicas can perform
one of the following operations:

• When a client requests an operation to be performed, replica ri performs the update locally.
is is denoted by U i .

• Periodically, replicas participate in pairwise synchronization, where they exchange their states
and arrive at a common state to reflect this exchange and update of knowledge. Pairwise
synchronization between ri and r j is denoted by S i j .

A finite sequence of operations performed by the distributed system is known as a run. (It is referred
to as a trace in [AAB], but we reserve that name for its more standard meaning, and use run here,
which is also standard terminology.) We denote a run by α = I o1o2 . . . on, where oi is either an
update operation or a synchronization operation.

A version vector of replica ri at the end of a run α is a vector Vi (α) of N integer counters. e
j th entry of Vi (α), denoted by V j

i (α), represents the most recent update of replica j that i is aware
of, at the end of α. We say that a version vector Vi (α) dominates V j (α) iff

∀k ∈ [0 . . .N − 1] : V k
i (α)≥V k

j (α)

Whenever Vi (α) dominates V j (α) and Vi (α) ̸=V j (α), sematically it means that at the end of
a run α, replica ri is more up to date than r j , which implies that ri has received all the updates that
r j has received.

We also define the pointwise join operation to be:

V k
i (α)⊔V k

j (α) =max(V k
i (α),V

k
j (α))

e semantics of the version vectors for the various operations are presented in Table ..

Example . Consider a distributed system with three replicas denoted by {0,1,2}. e sequence of
operations and the values of the version vectors of the three replicas is presented in Table ..



Operation Semantics

Initialization V k
i (I) = 0

Update V k
i (α ·U a) =

(
V k

i (α)+ 1 if k = i = a
V k

i (α) otherwise

Synchronization V k
i (α · Sab) =

(
V k

a (α)⊔V k
b
(α) if i ∈ {a, b}

V k
i (α) otherwise

Table .: Semantics of version vectors

Operation Replica 0 Replica 1 Replica 2
I [0,0,0] [0,0,0] [0,0,0]

U 0 [1,0,0] [0,0,0] [0,0,0]
U 2 [1,0,0] [0,0,0] [0,0,1]
S12 [1,0,0] [0,0,1] [0,0,1]
S01 [1,0,1] [1,0,1] [0,0,1]
S12 [1,0,1] [1,0,1] [1,0,1]

Table .: Evolutions of version vectors

. Version vector matrix

We saw that version vectors of a replica is used to model the knowledge that the replica possesses
about the most recent update about every other replica in the system. Similarly, we can define a
second order object that models the knowledge that the replica possesses about the most recent
version vector of every other replica in the system. Since this second order object also contains the
version vector of the replica itself, it can also capture data-causality amongst replicas. We term such
a second order object as a version vector matrix.

Formally, a version vector matrix for replica i at the end of a run α is defined to be an N ×N
matrix of integer counters, denoted by Mi (α) such that the j th row of Mi (α) denoted by Mi[j](α)
represents ri ’s knowledge of the version vector of r j . us Mi[i](α) represents the version vector
for replica i . We denote the k th entry in the j th row of Mi (α) as Mi[j]k(α).

We define a vector join operation for any two rows of any two version vector matrices Mi[k](α)
and M j [l](α), denoted by (Mi[k]⊔M j [l])(α), as follows:

∀p ∈ [0 . . .N − 1] : (Mi[k]⊔M j [l])
p(α) =Mi[k]

p(α)⊔M j [l]
p(α)

e semantics for version vector matrix is presented in Table ..

Proposition . For any run α and any replica ri ,

Mi[i](α) =Vi (α).



Operation Semantics

Initialization Mi[j]k(I) = 0

Update Mi[j]k(α ·U a) =

(
Mi[j]k(α)+ 1 If i = j = k = a
Mi[j]k(α) otherwise

Synchronization Mi[j](α · Sab) =


(Ma[a]⊔Mb[b])(α) if i , j ∈ {a, b}
(Ma[j]⊔Mb[j])(α) if i ∈ {a, b}
(Mi[j](α) otherwise

Table .: Semantics of version vector matrix

Proof. Induction on length of α.

Our goal is to arrive at a bounded representation for version vector matrices. Since version
vector matrices encode version vectors (from Proposition ), it follows that we have a bounded
representation for version vectors themselves. To obtain a bounded representation for version vector
matrices, we need to see them in a new light.

. Version vector slices

Let Mi (α) be a version vector matrix for ri at the end of a run α. e k th column of Mi denotes
what ri knows about the updates originated from replica k that have been propagated to other
replicas of the system. We term such a vertical slice of the version vector matrix a version vector slice
(VVS). e k th slice of Mi at the end of a run α is denoted by C k

i (α). e j th entry of the version
vector slice C k

i at the end of a run α is denoted by C k
i [j](α).

us a version vector matrix can be thought of as a concatenation of version vector slices. In
other words, Mi (α) = 〈C 0

i (α),C 1
i (α), . . .C N−1

i (α)〉.
We define the operational semantics for version vector slices in table .. ese are derived from

the semantics of version vector matrices.
In order to show a bounded representation for version vector matrices, it suffices to show that

there exists a bounded representation for a version vector slice. In subsequent sections of the first
part of this work, we shall obtain obtain a bounded representation for the version vector slice C 0

i .
Hence we shall only concern ourselves with update events of replica r0.



Operation Semantics

Initialization (C k
i [j])(I) = 0

Update (C k
i [j])(α ·U a) =

(
C k

i [j](α)+ 1 If i = j = k = a
C k

i [j](α) otherwise

Synchronization (C k
i [j])(α · Sab)


C k

a [a](α)⊔C k
b
[b](α) if i , j ∈ {a, b}

C k
a [j](α)⊔C k

b
[j](α) if i ∈ {a, b}

C k
i [j](α) otherwise

Table .: Semantics of version vector slices





Traces - An Introduction

In this section, introduce the framework of traces. We shall use this frame work to model the
interactions between the replicas in a natural manner. e framework provides us a natural way to
reason about the results given in [AAB].

. Traces of runs

Let α= I o1o2 . . . on be a run. We define Evs(α) to be {e⊥, e1, . . . , en}, the set of events at which the
operations in α occur. We define Ops(α) to be {I , o1, . . . , on}, the set of operations in α. For replica
rk (k ∈ {0,1, . . . ,N − 1}), α ↓ k denotes to be the maximal subsequence of α, I o j1

o j2
. . . o jm

such
that k is invoved in each of the operations o ji

. is subsequence defines a linear order ≤k over the
operations in α ↓ k.

Definition . Given a run α= I o1 . . . on, its trace, denoted t (α), is a triple (E ,≤,λ) such that:

• E = E (α)
• λ : E →Ops(α) such that λ(e⊥) = I and λ(ei) = oi for i ∈ {1, . . . , n}
• ≤ is the least partial order on E such that

∃k(λ(ei)≤k λ(e j))⇒ ei ≤ e j .

A triple t = (E ,≤,λ) is a trace if t = t (α) for some run α.

Example . Consider a distributed system with replicas [0,1,2,3].
Let the run α= I ·U 0 ·U 2 · S01 · S23 · S02 · S13.

α ↓ 0= I ·U 0 · S01 · S02

α ↓ 1= I · S01 · S13

α ↓ 2= I ·U 2 · S23 · S02

α ↓ 3= I · S23 · S13

e trace of α, t (α), is given in figure ..



..

I

.

U 0

.

U 2

.

S01

.

S23

.

S02

.

S13

.
r0.

r1

.

r2

.

r3

.

e⊥

.
e1.

e2

.

e3

.

e4

..

e5

.

e6

Figure .: Trace for the run α= I ·U 0 ·U 2 · S01 · S23 · S02 · S13 in example.

Definition . For a trace t = (E ,≤,λ) and S ⊆ E , the subtrace of t induced by S is given by t (S) =
(S,≤S ,λS) where:

• ≤S=≤ ∩ (S × S)

• λS(e) = λ(e) for all e ∈ S

In this representation, for i ̸= j , ei ≤ e j implies that the event e j occurs strictly after ei and
thus the replicas participating in λ(e j) know about the occurrence of the event ei . is transfer of
this knowledge can be traced along the path from ei to e j in the trace. We formalize this notion by
defining ideals.

. Ideals

Definition . Let t = (E ,≤,λ) be a trace of the run α. A subset I ⊆ E is said to be an ideal iff

∀ei ∈I and e j ≤ ei , e j ∈I .

us an ideal is a downward closed subset of E with respect to the partial order ≤.

Example . In the runαmentioned in example , the subsets {e⊥}, {e⊥, e1}, {e⊥, e2}, {e⊥, e1, e3},{e⊥, e2, e4},{e⊥, e1, e2, e3, e4, e5}, {e⊥, e1, e2, e3, e4, e6} and {e⊥, e1, e2, e3, e4, e5, e6} are all ideals.
We state a few properties of ideals:

Proposition . Let t = (E ,≤,λ) be a trace of some run α. en the following are true:

. E is an ideal.

. If ei ∈ E , the set ↓ ei = {e j |e j ≤ ei} is an ideal. (It is referred to as the ideal generated by ei .)

. Every ideal I is generated by its maximal elements. In other words I =∪ei∈supI ↓ ei .

. If I and J are ideals, so are I ∪J and I ∩J .



Our goal is to make use of the trace framework to model the flow of information amongst the
replicas in the system. To that end, we define some terms which we shall use often in the proofs.

Definition . Let I be an ideal and i be replica. An event e is the maximal event of i in I , denoted
by maxi (I), if f ≤ e for all i -events f . If t = (E ,≤,λ) is a trace, then we use the notation maxi (t)
to denote maxi (E).
Definition . e view of a replica i in an ideal I , denoted by ∂i (I), is ↓ maxi (I), the ideal
generated by the maximal i -event in I . For a trace t = (E ,≤,λ) and event e ∈ E , we use the
notations ∂i (t) and ∂i (e) to denote ∂i (E) and ∂i (↓ e), respectively.

Definition . Let I be an ideal and i and j be two replicas in the system. e latest information that
i has about j in I , denoted by latesti→ j (I), is defined to be max j (∂i (I)), the maximal j -event in
the view of i . If t = (E ,≤,λ) is a trace, then we use the notation latesti→ j (t) to denote latesti→ j (E).
Definition . LetI be an ideal and i be some replica in the system. e latest update event of i inI ,
denoted updatei (I), is max{e ∈I : λ(e) = U i}, the maximal i -event in I which is also an update
event. For a trace t = (E ,≤,λ) and event e ∈ E , we use the notations updatei (t) and updatei (e) to
denote updatei (E) and updatei (↓ e), respectively.

From the semantics of version vector matrices, we can observe that the value of the entry Mk[k]
k

increments during a k-update event.

Proposition . . If e1 and e2 are such that e1 ≤ e2, then updatei (e1)≤ updatei (e2).

. If updatei (e1)≤ e2, then updatei (e1)≤ updatei (e2).

. If e1 and e2 are j -events and updatei (e1)< updatei (e2) then e1 < e2.

Proof. . Since e1 ≤ e2, updatei (e1) =max{e ∈ e1 : λ(e) = U i} ≤max{e ∈ e2 : λ(e) = U i}=
updatei (e2).

. is follows from the previous part and the observation that

updatei (updatei (e1)) = updatei (e1).

. Since updatei (e1)< updatei (e2), it follows that updatei (e2) ̸≤ updatei (e1), and hence (from
item ) that e2 ̸≤ e1. But e1 and e2 are j events, and hence comparable. us it follows that
e1 < e2.

Going back to the semantics of version vector matrices, at the end of a runα, the value Mi[j]k(α)
captures the knowledge that replica i has of the latest k-update known to replica j . We shall express
this notion using the framework of traces following which we can resort to comparing correspond-
ing trace events using the partial order instead of comparing the integer entries in the version vector
matrices.





Version Vector Matrices and Trace-events

. Relationship between Version vector matrix entries and trace
events

In this section, we shall show why the trace-representation of a run captures the behaviour of com-
municating replicas more effectively than the runs themselves. To do this, we define the notion of
linearization of a trace:

Definition . Let t = (E ,≤,λ) be a trace. We say that η is a linearization of t iff η= ei0
· ei1
· · · · · ein

is some permutation of all the events in E such that if ei j
≤ eik

in t then j ≤ k.

Note: One can observe that η is a linearization of t iff t = t (λ(η)).

We want to define the notion of version vector matrices over traces using the semantics of version
vector matrices over runs. To that end, we take a note of the following property about the version
vector matrices over runs.

Proposition . Let α and α′ be runs such that for any replica i , Mi (α) = Mi (α
′). Let o1 and o2 be

operations such that the sets of participating replicas of o1 and o2 are disjoint. en, for any replica i ,
Mi (αo1o2) =Mi (α

′o2o1).

Proof. ere are three cases to consider.

i does not participate in either o1 or o2: In this case Mi (αo1) =Mi (αo2) =Mi (α) and Mi (α
′o1) =

Mi (α
′o2) =Mi (α

′). Hence, Mi (αo1o2) =Mi (α) =Mi (α
′) =Mi (α

′o2o1).

i participates in o1 but not in o2: In this case Mi (α
′o2) = Mi (α

′) = Mi (α). Hence Mi (α
′o2o1) =

Mi (αo1). Similarly, Mi (αo1o2) =Mi (αo1) since Mi doesn’t get modified during o2. us we
see that Mi (αo1o2) =Mi (α

′o2o1).

i participates in o2 but not in o1: is case is similar to the above.

Definition . Let t = (E ,≤,λ) be a trace and let η be some linearization of t . For a replica i , the
version vector matrix of i over t , denoted by Mi (t), is defined to be Mi (λ(η)).



Since t can have multiple linearizations, we need to show that our notion of version vector
matrices over traces as presented here is well defined.

Lemma . Let t be a trace and η1 and η2 be any linearizations of t . For any replica i , Mi (λ(η1)) =
Mi (λ(η2)).

Proof. We show this by an induction over the size of the trace t .
Suppose t = ({e⊥},≤,λ). en η1 = η2 = e⊥. us for any replica i , Mi (λ(η1)) =Mi (λ(η2)) =

Mi (I). Suppose the result is true for all traces of size smaller than n and let t = (E ,λ,≤) be
a trace whose size is n. Let us denote the set of all maximal elements in t by Maxt . Let t ′ be
the trace t (E \Maxt). Now any linearization η of t can be written as η′η′′ where η′ is some
linearization of t ′ and η′′ is some permutation of Maxt . us we can write η1 = η

′
1η
′′
1 and

η2 = η
′
2η
′′
2 where η′1 and η′2 are linearizations of t ′ and η′′1 and η′′2 are permutations of Maxt . us

Mi (λ(η1)) = Mi (λ(η
′
1η
′′
1)) and Mi (λ(η2)) = Mi (λ(η

′
2η
′′
2)). Since any pair of events e j , ek ∈Maxt

are incomparable, the sets of replicas participating in λ(e j) and λ(ek) are disjoint. Since by induc-
tion hypothesis, Mi (λ(η

′
1)) = Mi (λ(η

′
2)), by Proposition , we get Mi (λ(η

′
1η
′′
1)) = Mi (λ(η

′
2η
′′
2)).

us Mi (λ(η1)) =Mi (λ(η2)).

Definition . If i is any replica and e is some event in trace t and t ′ = t (↓ e) the sub-trace associated
with the ideal ↓ e , then define Mi (e) =Mi (t

′).

Proposition . Let t = (E ,≤,λ) be a trace and i be a replica. Let e i
max be the maximal i -event in t .

en, Mi (t) =Mi (e
i
max). .

Proof. Let t ′ = (↓ e i
max,≤e i

max
,λe i

max
) be the trace associated with the view of i in t . Observe that

events in E\ ↓ e i
max do not lie below e i

max. us there is a linearization of t of the form η′ ·η′′, where
η′ is a linearization of t ′ and η′′ is a linearization of t (E\ ↓ e i

max). Hence Mi (t) =Mi (λ(η
′) ·λ(η′′)).

Since η′′ does not contain any i -operation, Mi (λ(η
′) · λ(η′′)) = Mi (λ(η

′)). But this means that
Mi (t) =Mi (t

′).

We now formalise our intuition which associates the entries of the version vector matrices with
the events in the partial order.

Definition . For a trace t = (E ,≤,λ), luk
i→ j (t)

def= updatek(latesti→ j (t)).

eorem . If t is a trace and i , j , k are replicas then Mi[j]k(t) =Mk[k]
k(luk

i→ j (t)).

Proof. We shall prove this result by induction on the size of the trace t . Suppose t contains only
one event, I . en, from the semantics of version vector matrices, for every i , j , k, Mi[j]k(t) = 0.
Also, since for every i , j , k, luk

i→ j (t) = e⊥, and the trace corresponding to ↓ e⊥ is t itself, it follows

that Mk[k]
k(luk

i→ j (t)) = 0.
Assume that for all the traces whose size is smaller than n, the result holds, and let t = (E ,≤,λ)

be a trace of size n. Let emax be some maximal event in t , and omax = λ(emax). DefineE ′ = E\{emax}
and t ′ = t (E ′). By induction hypothesis, for any i , j , k, Mi[j]k(t ′) = Mk[k]

k(luk
i→ j (t

′)). ere
are the following cases to consider.

i does not participate in omax: In this case Mi[j]k(t) = Mi[j]k(t ′) and luk
i→ j (t) = luk

i→ j (t
′).

us Mi[j]k(t) =Mk[k]
k(luk

i→ j (t)).



omax =U i and i ̸∈ { j , k}: We argue as in the previous case.

omax =U i and j = k = i : From Proposition , we have Mi[j]k(t) = Mi[j]k(emax). Since i =
j = k and since by definition, luk

i→ j (t) = emax, Mi[j]k(t) =Mk[k]
k(luk

i→ j (t)).

omax = S i l and j ∈ {i , l }: In this case, Mi[j]k(t) = max(Mi[i]
k(t ′), M l [l]

k(t ′)). By induction
hypothesis, this is the same as max(Mk[k]

k(luk
i→i (t

′)), Mk[k]
k(luk

l→l (t
′))). Since emax is

not an update event, luk
i→ j (t) = max(luk

i→i (t
′), luk

l→l (t
′)). It follows that Mi[j]k(t) =

Mk[k]
k(luk

i→ j (t)).

omax = S i l and j ̸∈ {i , l }: In this case, Mi[j]k(t) = max(Mi[j]k(t ′), M l [j]k(t ′)). By induction
hypothesis, this is the same as max(Mk[k]

k(luk
i→ j (t

′)), Mk[k]
k(luk

l→ j (t
′))). Since emax is

not an update event, luk
i→ j (t) = max(luk

i→ j (t
′), luk

l→ j (t
′)). It follows that Mi[j]k(t) =

Mk[k]
k(luk

i→ j (t)).

Corollary . If t is a trace and a, b , i , j , k are replicas then

• Ma[i]
k(t)<Mb[j]k(t) iff luk

a→i (t)< luk
b→ j (t).

• Ma[i]
k(t) =Mb[j]k(t) iff luk

a→i (t) = luk
b→ j (t).

Proof. Ma[i]
k(t) ≤ Mb[j]k(t) iff Mk[k]

k(luk
a→i (t)) ≤ Mk[k]

k(luk
b→ j (t)) (from theorem ) iff

luk
a→i (t)≤ luk

b→ j (t) (since luk
a→i (t) and luk

b→ j (t) are both k-update events). e statements in the
corollary follow from this.

. Primary and secondary update events

We begin our quest for bounded representation by modelling the 0th slice of version vector matrix
Ma for each replica a. From eorem  we know that for any trace t , each entry Ma[i]

0(t) of
the version vector matrix has an associated 0-update event: lu0

a→i (t). We shall call these events the
primary update events for replica a in t . We shall denote this set of events by PrimaryUpdate0

a(t).
e event lu0

a→a(t), which is the latest 0-update event that a knows about shall be called the principal
event for a.

We shall next state a few properties about the primary update events which we shall use repeat-
edly later.

Lemma . Given replicas a,b and k, and a trace t = (E ,≤,λ),

. lu0
a→b (t)≤ lu0

b→b (t)

. lu0
a→a(t)≤ lu0

0→0(t)

. lu0
a→k(t)≤ lu0

a→a(t)



Proof. . Since latesta→b (t)≤maxb (t) = latestb→b (t), by proposition  and by the definition
of primary update events, we get lu0

a→b (t)≤ lu0
b→b (t).

. Since lu0
a→a(t) is a 0-event, lu0

a→a(t)≤max0(t). By proposition , update0(↓ lu0
a→a(t))≤

update0(max0(t)). But since lu0
a→a(t) is a 0-update event, update0(lu

0
a→a(t)) = lu0

a→a(t).
Also, by definition, update0(max0(t)) = lu0

0→0(t). Hence lu0
a→a(t)≤ lu0

0→0(t) as required.

. is follows from the fact that latesta→k(t)≤ latesta→a(t) and Proposition  and the defi-
nitions.

Definition . For a trace t = (E ,≤,λ), latesta→b→c (t)
def= latestb→c (∂a(t)) and luk

a→b→c (t)
def=

updatek(latesta→b→c (t)).

Observation . . latesta→b (t) = latesta→b→b (t) = latesta→a→b (t).

. If latesta→b (t)≤ latestc→d (t) then latesta→b (t)≤ latestc→d→b (t).

Note that for a given replica a, the size of {lu0
a→i→ j (t) | i , j < N} is bounded by N 2. (Recall

that N is the number of replicas.)
We now prove a few key results about how the various events of the form lu0

a→b (t) and lu0
a→b→c (t)

relate to each other. Preliminary to that we shall state and prove the following important lemma
on paths that begin inside an ideal and end outside it. is lemma shall be used extensively in the
rest of the paper.

Lemma  (Crossover point lemma). Let I ⊆ E be an ideal in a trace, and a be a replica. For
events e1 and e2 such that e1 ∈ ∂a(I), e2 ∈ I \ ∂a(I) and e1 < e2, there exists a replica c such that
e1 ≤ latesta→c (I)≤ e2.

..

∂a(I)

.. maxa(I)..

e1

..

e2

..

e3

..

e4

..
latesta→c (I)

Figure .: Crossover point lemma where e3 and e4 are both c-events and e1 · · · → e3→ e4 · · · → e2
is some path from e1 to e2.

Proof. Let P be any path from e1 to e2 and let e3 be the maximal ∂a(I)-event on this path. Let e4
be the minimal element along P such that e4 ̸∈ ∂a(I). Clearly e1 ≤ e3 and e4 ≤ e2. Also, there is
an edge from e3 and e4, and this means that there is a replica c such that both e3 and e4 are c events.



Clearly e3 ≤ latesta→c (I). Since e4 ̸∈ ∂a(I), e4 ̸≤ latesta→c (I). But since e4 is a c-event,
latesta→c (I)< e4. us e1 ≤ latesta→c (I)≤ e2.

Lemma . For any trace t = (E ,≤,λ) and all replicas a, b , there exist replicas c , d such that
lu0

a→b (t) = lu0
0→c→d (t).

Proof. We need to consider the following cases:

maxa(t) ∈ ∂0(t): In this case maxa(t) =maxa(∂0(t)). Hence it immediately follows that lu0
a→b (t) =

lu0
0→a→b (t).

maxa(t) ̸∈ ∂0(t) and latesta→b (t) ∈ ∂0(t): By the crossover point lemma, there is a c such that
latesta→b (t) ≤ latest0→c (t) and latest0→c (t) ≤ maxa(t). But from the first inequality it
follows that latesta→b (t) ≤ latest0→c→b (t), and from the second inequality it follows that
latest0→c→b (t)≤ latesta→b (t). Hence lu0

a→b (t) = lu0
0→c→b (t)

maxa(t) ̸∈ ∂0(t) and latesta→b (t) ̸∈ ∂0(t): By the crossover point lemma, there is a c such that
lu0

a→b (t) ≤ latest0→c (t) = latest0→c→c (t) and latest0→c (t) = latest0→c→c (t) ≤ latesta→b (t).
But from the first inequality it follows that lu0

a→b (t) ≤ lu0
0→c→c (t), and from the second

inequality it follows that lu0
0→c→c (t)≤ lu0

a→b (t). Hence lu0
a→b (t) = lu0

0→c→c (t)

Lemma . Let t = (E ,≤,λ) be a trace and a, b , k be replicas such that lu0
a→a(t) ≤ lu0

b→b (t) and
lu0

b→k(t)≤ lu0
a→k(t). en there is a replica l such that lu0

a→k(t) = lu0
b→l (t).

Proof. Observe that lu0
a→k(t) ∈ ∂b (t). Now suppose latesta→k(t) ∈ ∂b (t). en latesta→k(t) ≤

latestb→k(t). us lu0
a→k(t)≤ lu0

b→k(t). It follows that lu0
a→k(t) = lu0

b→k(t).
If latesta→k(t) ̸∈ ∂b (t), then by the crossover point lemma there is l such that lu0

a→k(t) ≤
latestb→l (t) ≤ latesta→k(t). It immediately follows that lu0

a→k(t) ≤ lu0
b→l (t) ≤ lu0

a→k(t), and
hence lu0

a→k(t) = lu0
b→l (t).

Corollary . Let t = (E ,≤,λ) be a trace and a, b be replicas. en lu0
a→a(t) ≤ lu0

b→b (t) iff
lu0

a→a(t) ∈ PrimaryUpdate0
b (t).

Proof. Suppose lu0
a→a(t) ≤ lu0

b→b (t). From Lemma , we have lu0
b→a(t) ≤ lu0

a→a(t). Set-
ting k = a, from Lemma , we get lu0

a→a(t) = lu0
b→l (t) for some replica l . us lu0

a→a(t) ∈
PrimaryUpdate0

b (t).
For the converse, suppose there exists an l such that lu0

a→a(t) = lu0
b→l (t). From Lemma ,

we have lu0
b→l (t)≤ lu0

b→b (t) thus giving us lu0
a→a(t)≤ lu0

b→b (t)





Bounding the version vectors: a la [AAB]

. Bounded Representation

We have thus far shown that, as a run proceeds, comparison between matrix elements can be reduced
to comparison between the corresponding events in the trace of the run (Corollary ). In fact,
Corollary  tells us more: that at any point in the run, comparisons need to be performed only
among elements of the form lu0

a→b (t) in the corresponding trace. is is a set of size N 2. So we
need to keep track of these elements as the run proceeds. But we need to compare elements of this
form, so we need to keep track of the order between these elements. Furthermore, information
about the events lu0

a→i (t), as well as the ordering among them, is maintained by replica a locally, so
we need to show that the information change, as the run proceeds, can be computed locally. If we
manage to show this, we would have shown that the relevant order among the version matrix entries
can be determined from a bounded number of events in each trace and their relative order. But even
though the information needed at each stage of a run is bounded, this information keeps changing.
So it would be nice to introduce a bounded set of labels that we use to represent the information at
each stage of the run, and reuse the labels appropriately. To determine whether labels can be reused
require us to also maintain the secondary update events lu0

i→ j→k(t) for each trace. We need to show
that these can also be computed locally as the run proceeds.

We start off with a technical lemma, which reduces order to containment, much like Corol-
lary .

Lemma . Let t = (E ,≤,λ) and a, b , i be replicas. If lu0
a→i (t) = lu0

b→i (t) and latesta→i (t) ≤
latestb→i (t) then {lu0

b→i→ j (t) | j <N} ⊆ {lu0
a→i→ j (t) | j <N}.

Proof. Let j <N be some replica. Since latesta→i (t)≤ latestb→i (t), it follows that latesta→i→ j (t)≤
latestb→i→ j (t), for any j . us lu0

a→i→ j (t)≤ lu0
b→i→ j (t). If latestb→i→ j (t)≤ latesta→i (t), then it

easily follows that lu0
b→i→ j (t) = lu0

a→i→ j (t).
Suppose latestb→i→ j (t) ̸≤ latesta→i (t). en, since lu0

b→i→ j (t) ≤ lu0
b→i (t) = lu0

a→i (t) ≤
latesta→i (t), we can appeal to the crosspoint lemma and obtain l such that lu0

b→i→ j (t)≤ latesta→i→l (t)
and latesta→i→l (t) ≤ latestb→i→ j (t). But from these two equations it immediately follows that
lu0

b→i→ j (t)≤ lu0
a→i→l (t) and lu0

a→i→l (t)≤ lu0
b→i→ j (t). us lu0

b→i→ j (t) = lu0
a→i→l (t).

Definition . For any trace t = (E ,≤,λ) and replica a, we define the “local” partial order ≤t
a as



follows:

e ≤t
a e ′ iff [e ′ ∈ PrimaryUpdate0

a(t) and (e ̸∈ PrimaryUpdate0
a(t) or e ≤ e ′)].

For events e and e ′ such that {e , e ′} ∩PrimaryUpdate0
a(t) ̸= ;,

maxt
a(e , e ′) =
(

e if e ′ ≤t
a e

e ′ if e ≤t
a e ′

eorem . Let α be a run and α′ = α · Sab , t = t (α) = (E ,≤,λ) and t ′ = t (α′). Let w (for
“winner”) be defined as follows:

w =

(
b if lu0

a→a(t) ∈ PrimaryUpdate0
b (t)

a otherwise

Also let Si (for i ̸∈ {a, b}) be defined as follows:

Si =


{lu0

a→i→ j (t) | j <N} if lu0
a→i (t)>

t
w lu0

b→i (t)
or [lu0

a→i (t) = lu0
b→i (t) and{lu0

a→i→ j (t) | j <N} ⊆ {lu0
b→i→ j (t) | j <N}]

{lu0
b→i→ j (t) | j <N} otherwise

en:

. for all i , j ∈ {a, b}, lu0
i→ j (t

′) = lu0
w→w(t).

. for all i ̸∈ {a, b}, lu0
i→ j (t

′) = lu0
i→ j (t).

. for all i ∈ {a, b}, j ̸∈ {a, b}, lu0
i→ j (t

′) =maxt
w(lu

0
a→ j (t), lu0

b→ j (t)).

. for all i ∈ {a, b} and for all j , k, lu0
i→ j (t

′)≤t ′
i lu0

i→k(t
′) iff lu0

i→ j (t
′)≤t

w lu0
i→ j (t

′).

. for all i ̸∈ {a, b} and for all j , k, lu0
i→ j (t

′)≤t ′
i lu0

i→k(t
′) iff lu0

i→ j (t
′)≤t

i lu0
i→ j (t

′).

. for all c , i ∈ {a, b}, for all j , lu0
c→i→ j (t

′) = lu0
c→ j (t

′).

. for all c ̸∈ {a, b}, for all i , j , lu0
c→i→ j (t

′) = lu0
c→i→ j (t).

. for all c ∈ {a, b}, i ̸∈ {a, b}, {lu0
c→i→ j (t

′) | j <N}= Si .

Proof. We start with a key observation.
Suppose lu0

a→a(t)≤ lu0
b→b (t). en by Corollary , lu0

a→a(t) ∈ PrimaryUpdate0
b (t) and w =

b . Otherwise lu0
b→b (t)< lu0

a→a(t) and w = a. erefore max(lu0
a→a(t), lu0

b→b (t)) = lu0
w→w(t).

. For i , j ∈ {a, b}, lu0
i→ j (t

′) =max(lu0
a→a(t), lu0

b→b (t)) = lu0
w→w(t).



. For i ̸∈ {a, b} and any j , clearly lu0
i→ j (t

′) = lu0
i→ j (t).

. Suppose i ∈ {a, b} and j ̸∈ {a, b}. en lu0
i→ j (t

′) =max(lu0
a→ j (t), lu0

b→ j (t)). Assume that
w = b . We consider two cases.

lu0
a→ j (t)≤ lu0

b→ j (t): en it is also the case that lu0
a→ j (t)≤t

b
lu0

b→ j (t) (even when lu0
a→ j (t) ̸∈

PrimaryUpdate0
b (t)).

lu0
b→ j (t)≤ lu0

a→ j (t): en lu0
a→ j (t) = lu0

b→l (t) for some l . us lu0
b→ j (t)≤t

b
lu0

a→ j (t).

us lu0
i→ j (t

′) = max(lu0
a→ j (t), lu0

b→ j (t)) = maxt
b
(lu0

a→ j (t), lu0
b→ j (t)). e argument is

similar when w = a.

. Observe that for any j , lu0
i→ j (t

′) = lu0
w→l (t) for some l . us lu0

i→ j (t
′) ≤t ′

i lu0
i→k(t

′) iff
lu0

i→ j (t
′)≤t

w lu0
i→k(t

′).

. is follows from item .

. Suppose c , i ∈ {a, b}. en latestc→i (t
′) = latestc→c (t

′) =maxc (t
′) and hence lu0

c→i→ j (t
′) =

update0(max j (latestc→i (t
′))) = update0(max j (maxc (t

′))) = lu0
c→ j (t

′).

. Suppose c ̸∈ {a, b}. en latestc→i (t
′) = latestc→i (t) and hence lu0

c→i→ j (t
′) = lu0

c→i→ j (t).

. We need to consider several cases.

lu0
a→i (t)>

t
w lu0

b→i (t): In this case, by Proposition , latesta→i (t)> latestb→i (t). us for
all j <N , lu0

c→i→ j (t
′) = lu0

a→i→ j (t), and hence the statement of the theorem follows.

lu0
a→i (t) = lu0

b→i (t) and {lu0
a→i→ j (t) | j <N}= {lu0

b→i→ j (t) | j <N}: Let x be defined as
follows:

x =

(
a if latesta→i (t)≥ latestb→i (t)
b otherwise

en it is clear that for all j < N , lu0
c→i→ j (t

′) = max(lu0
a→i→ j (t), lu0

b→i→ j (t)) =
lu0

x→i→ j (t). us

{lu0
c→i→ j (t

′) | j <N}= {lu0
x→i→ j (t) | j <N}= {lu0

a→i→ j (t) | j <N}= Si .

lu0
a→i (t) = lu0

b→i (t) and {lu0
a→i→ j (t) | j <N}⊊ {lu0

b→i→ j (t) | j <N}: It immediately fol-

lows that {lu0
b→i→ j (t) | j <N} ̸⊆ {lu0

a→i→ j (t) | j <N}. By Lemma , latesta→i (t) ̸≤
latestb→i (t), and hence latesta→i (t)> latestb→i (t). us

lu0
c→i→ j (t

′) =max(lu0
a→i→ j (t), lu0

b→i→ j (t)) = lu0
a→i→ j (t)

and hence the statement of the theorem follows.



lu0
a→i (t) = lu0

b→i (t) and {lu0
a→i→ j (t) | j <N} ̸⊆ {lu0

b→i→ j (t) | j <N}: By Lemma , it fol-
lows that latestb→i (t) ̸≤ latesta→i (t), and hence latesta→i (t)< latestb→i (t). us

lu0
c→i→ j (t

′) =max(lu0
a→i→ j (t), lu0

b→i→ j (t)) = lu0
b→i→ j (t)

and hence the statement of the theorem follows.

lu0
a→i (t)<

t
w lu0

b→i (t): In this case, by Proposition , latesta→i (t)< latestb→i (t). us for
all j <N , lu0

c→i→ j (t
′) = lu0

b→i→ j (t), and hence the statement of the theorem follows.

eorem . Letα be a run andα′ = α·U 0, t = t (α) = (E ,≤,λ) and t ′ = t (α′) = (E∪{e},≤′,λ′).
en:

. for i ̸= 0 and any j , lu0
i→ j (t

′) = lu0
i→ j (t).

. for j ̸= 0, lu0
0→ j (t

′) = lu0
0→ j (t).

. lu0
0→0(t) = e .

. for all i ̸= 0, ≤t ′
i =≤t

i .

. for all i , j , lu0
0→i (t

′)≤t ′
i lu0

0→ j (t
′) iff either j = 0 or lu0

0→i (t
′)≤t

i lu0
0→ j (t

′).

. for all j , lu0
0→0→ j (t

′) = lu0
0→ j (t

′).

. for all i ̸= 0, for all j , lu0
0→i→ j (t

′) = lu0
0→i→ j (t).

. for all c ̸= 0, for all i , j , lu0
c→i→ j (t

′) = lu0
c→i→ j (t).

Proof. All parts of the theorem follow from the definitions and the fact that e is the maximal 0-event
and maximal update event in t .

eorem . Let α be the run consisting of the single operation I , and let t = t (α) = ({e⊥},;,λ).
en:

. for all i , j , lu0
i→ j (t) = e⊥.

. for all i , j , k, lu0
i→ j (t) =

t
i lu0

i→k(t).

. for all i , j , k, lu0
i→ j→k(t) = e⊥.

For the rest of this section, we fix a set L = {l0, . . . , lN 2} of labels. Let [N] denote the set
{0, . . . ,N − 1}. For any trace t , we let P (t) denote

∪
b∈[N]PrimaryUpdate0

b (t). For any trace
t = (E ,≤,λ), let E0 = {e ∈ E | λ(e) =U 0}.
Definition . Let t = (E ,≤,λ) be a trace. We say that (δ,σ ,τ,⪯0, . . . ,⪯N−1) is a valid L -
labelling for t iff:



• δ : E0→L is a function such that for all e , e ′ ∈ P (t) : δ(e) = δ(e ′)⇒ e = e ′.

• σ : [N]2→L is a function such that σ(a, b) = δ(lu0
a→b (t)).

• τ : [N]2→ 2L is a function such that τ(a, b) = {δ(lu0
a→b→ j (t)) | j ∈ [N]}.

• for all a ∈ [N], ⪯a is a partial order onL such that

for all e , e ′ ∈ PrimaryUpdate0
a(t) : δ(e)⪯a δ(e

′) iff e ≤t
a e ′.

eorem . Let α be a run and t = t (α) = (E ,≤,λ). en there is a validL -labelling for t which,
further, is locally computable.

Proof. We define a labelling valid for t by induction on the length of α.

α= I : In this case take δ(e⊥) = l0, σ(a, b) = l0, and τ(a, b) = {l0}. We also take l0 ⪯a l0 for all
a. It is an immediate observation that (δ,σ ,τ,⪯0, . . . ,⪯N−1) is a valid labelling for t .

α= α′ · o: Suppose t ′ = t (α′) = (E ′,≤′,λ′), E \E ′ = {emax}, and let (δ ′,σ ′,τ′ ⪯′0, . . . ,⪯′N−1) be
a validL -labelling for t ′.
is means that for all e , e ′ ∈ P (t ′), δ ′(e) = δ ′(e ′) iff e = e ′. So it follows that

lu0
a→a(t

′) ∈ PrimaryUpdate0
b (t
′) iff σ ′(a,a) ∈ τ′(b , b).

We now define the new labelling functions δ,σ ,τ for t . ere are two cases.

o =U 0: Let l ∈L be the label with least index such that l ̸∈∪a∈[N]τ(0,a). (ere is one
such, sinceL is of size N 2+ 1 and there are at most N 2 events in

∪
a∈[N]τ(0,a).) By

Lemma , for every a, b <N , there are c , d <N such that lu0
a→b (t

′) = lu0
0→c→d (t

′).
us, for all a, b <N , δ ′(lu0

a→b (t
′)) ̸= l .

In this case, we define δ as follows:

δ(e) =

(
l if e = emax

δ ′(e) otherwise

Observe from eorem  that for e ∈ P (t), either e = emax and δ(e) = l or e ∈ P (t ′)
and δ(e) = δ ′(e) ̸= l . us if δ(e) = δ(e ′) then either e = e ′ = emax or e , e ′ ∈ P (t ′)
and δ ′(e) = δ ′(e ′), whence by induction hypothesis e = e ′.
We define σ as follows:

σ(a, b) =

(
l if a = b = 0
σ ′(a, b) otherwise

We define τ as follows:

τ(a, b) =

({σ(0, c) | c ∈ [N]} if a = b = 0
τ′(a, b) otherwise



We define ⪯a as follows:

l ′ ⪯a l ′′ iff l ′′ = l or (l ′′ ̸= l and l ′ ⪯′a l ′′).

It is clear that from the assumptions on σ ′,τ′, and ⪯′a and eorem  that σ , τ,
and ⪯a satisfy the conditions for a valid labelling of t , since the definitions mirror the
properties proved in eorem .

o = Sab : We let δ = δ ′. Observe from eorem  that P (t)⊆ P (t ′). erefore it follows
that for e , e ′ ∈ P (t), if δ(e) = δ(e ′) then e = e ′.
Let w be defined as follows:

w =

(
b if σ ′(a,a) ∈ τ′(b , b)
a otherwise

We define σ as follows:

σ(i , j) =


σ ′(w, w) if i , j ∈ {a, b}
σ ′(i , j) if i ̸∈ {a, b}
max⪯′w (σ

′(a, j),σ ′(b , j)) otherwise

We define ⪯i as follows:

l ⪯i l ′ iff
�
(i ∈ {a, b} and l ⪯′w l ′) or (i ̸∈ {a, b} and l ⪯′i l ′)

�
It is clear that from the assumptions on σ ′ and ⪯′a and eorem  that σ and ⪯a
satisfy the conditions for a valid labelling of t . We just need to define τ appropriately.
For c , i ∈ {a, b}, we define τ(c , i) = {σ(c , j) | j <N}.
For c ̸∈ {a, b}, we define τ(c , i) = τ′(c , i). For c ∈ {a, b} and i ̸∈ {a, b}, we define
τ(c , i) as follows:

τ(c , i) =


τ′(a, i) if σ ′(a, i)≺w σ

′(b , i) or
[σ ′(a, i) = σ ′(b , i) and τ′(a, i)⊆ τ′(b , i)]

τ′(b , i) otherwise

We need to prove that τ(c , i) = {δ(lu0
c→i→ j (t)) | j ∈ [N]}. Since in most cases the

definition mirrors the properties proved in eorem , the only nontrivial case to be
proved is when σ ′(a, i) = σ ′(b , i). But this means that δ(lu0

a→i (t
′)) = δ(lu0

b→i (t
′)),

and by induction hypothesis onδ ′ (which is the same asδ), lu0
a→i (t

′) = lu0
b→i (t

′). But
in this case, by Lemma  that either {lu0

a→i→ j (t
′) | j <N} ⊆ {lu0

b→i→ j (t
′) | j <N},

or {lu0
b→i→ j (t

′) | j <N}⊊ {lu0
a→i→ j (t

′) | j <N}.
Now when τ′(a, i)⊆ τ′(b , i) there are two cases:
{lu0

a→i→ j (t
′) | j <N} ⊆ {lu0

b→i→ j (t
′) | j <N}: In this case {lu0

c→i→ j (t) | j < N} =
{lu0

a→i→ j (t
′) | j <N} and τ(c , i) = τ′(a, i) and thus

τ(c , i) = {δ(lu0
c→i→ j (t)) | j <N}.



{lu0
b→i→ j (t

′) | j <N}⊊ {lu0
a→i→ j (t

′) | j <N} and τ′(a, i) = τ′(b , i): In this case we

can see that {lu0
c→i→ j (t) | j < N} = {lu0

b→i→ j (t
′) | j < N} and τ(c , i) =

τ′(b , i) = τ′(a, i) and thus

τ(c , i) = {δ(lu0
c→i→ j (t)) | j <N}.

In the case that τ′(b , i)⊊ τ′(a, i), it immediately follows that {lu0
b→i→ j (t

′) | j <N}⊊
{lu0

a→i→ j (t
′) | j <N}. In this case {lu0

c→i→ j (t) | j <N}= {lu0
b→i→ j (t

′) | j <N} and
τ(c , i) = τ′(b , i) and thus

τ(c , i) = {δ(lu0
c→i→ j (t)) | j <N}.

us (δ,σ ,τ,⪯0, . . . ,⪯N−1) is a validL -labelling of t .

. Complexity of our solution

Since the labels are drawn from a set of size N 2+ 1, to represent each label requires θ(logN) bits.
Since we need to maintain N 2 entries of the form σ(c , i) and N 2 sets (each of size N) of the form
τ(c , i), and a linear ordering on N 2 elements, the amount of overall information that needs to be
stored at any point is O(N 3 · logN) bits. is is a representation for the version vector slices C 0

a (t),
for each a. We can represent the other slices also in a similar manner. So to represent all the version
vector matrices would require O(N 4 · logN) bits to be used.

. A critique of the solution

Our goal was to obtain a bounded representation for version vectors of a distributed system compris-
ing of N replicas. To achieve this, we modelled the problem using the traces of the run comprising
of these operations. We associated with each version vector entry V k

a (t), the U k event luk
a→a(t),

which was the earliest event at which the value of V k
k

was the same as the current value of V k
a .

In this model, we showed that during a synchronization operation performed by replicas a, b ,
pairwise comparison of entries V k

a (t) and V k
b
(t) was equivalent to comparing the corresponding

events luk
a→a(t) and luk

b→b (t). We solved this problem by noting the fact that luk
b→b (t) is the

latest U k event among the two iff the event luk
a→a(t) is present in the set of primary update events

PrimaryUpdatek
b (t) of b with respect to the replica k.

us reducing the comparison problem to a set containment problem means that each replica
a would end up maintaining the sets of primary update events PrimaryUpdatek

a (t) for each replica
k. us it is convenient to work with version vector slices instead of version vectors themselves,
since the entries in the version vector slice C k

a (t) correspond to the events in PrimaryUpdatek
a (t).

One drawback in this solution is that there is no way to check if latesta→k(t) is strictly less than
latestb→k(t) directly. One has to resort to checking a complicated set inclusion. is would be
solved if we had a way to label all events, rather than only the update events.



Another potential drawback is that the above solution works for only one slice, and we have to
repeat it for the other slices. It would be better if there was a solution for the version vector matrices
as a whole, with comparable space complexity. We devote the next section to such a solution based
on the gossip problem.





Bounding the version vectors: Using gossip

. A more efficient bounded representation

In this section we adapt a solution to the gossip problem [MS] to provide a bounded represen-
tation for version vector matrices. In this solution, we maintain information about not just the
primary update events, but also the primary events themselves. As we have seen already, this will
require us to also maintain information about secondary update events and secondary events.

Suppose a and b are replicas with version vectors Va(t) and Vb (t) at the end of a trace t . We
have already argued (in Corollary ) that comparing V k

a (t) and V k
b
(t) is equivalent to comparing

luk
a→a(t) with luk

b→b (t). Since for any replica i , luk
i→i (t) = luk

i→k(t), comparing V k
a (t) and V k

b
(t)

is equivalent to comparing luk
a→k(t) with luk

b→k(t).
e following is an immediate consequence of Proposition .

Proposition . Let t = (E ,≤,λ) be a trace and a, b , k <N . If luk
a→k(t) ̸= luk

b→k(t) then

luk
a→k(t)< luk

b→k(t) iff latesta→k(t)< latestb→k(t).

us the problem of comparing distinct principal k-update events corresponds to comparing
the latest k-events in the views of the appropriate a and b .

. Gossip problem: Recap of the results

Definition . Let t = (E ,≤,λ) be an ideal and a be a replica. We define the primary information of
a in t , denoted by Primarya(t) to be the set of all the latest events in the view of a in t .

Formally, Primarya(t) = {latesta→k(t) | k <N}.
Our goal is to settle the question of comparing latesta→k(t) and latestb→k(t) using a finite

amount of information that is also local. If latesta→k(t) ≤ latestb→k(t) then latesta→k(t) is in
the view ∂a(t) ∩ ∂b (t). us, latesta→k(t) is in the view generated by the maximal elements of
∂a(t)∩ ∂b (t). We show the following nice property about these maximal elements.

Lemma . Let a and b are replicas and t = (E ,≤,λ) be a trace. If e is a maximal event in the ideal
∂a(t)∩ ∂b (t) then e ∈ Primarya(t)∩Primaryb (t).



..

∂b (t)

.

∂a(t)

..

maxa(t)

..maxb (t)..

e = latesta→c (t) = latestb→d (t)

Figure .: Figure for lemma . e is a maximal event in ∂a(t)∩ ∂b (t).

Proof. If maxa(t) ∈ ∂b (t) then, ∂a(t) ∩ ∂b (t) = ∂a(t) whose sole maximal element is maxa(t)
which also happens to be the same as latestb→a(t) which is a member of Primaryb (t) by definition.
us maxa(t) ∈ Primaryb (t). e case where maxb (t) ∈ ∂a(t) can be similarly handled.

Suppose it is neither the case that maxa(t) ∈ ∂b (t) nor the case that maxb (t) ∈ ∂a(t). en
maxa(t) ∈ ∂a(t) \ ∂b (t). Similarly maxb (t) ∈ ∂b (t) \ ∂a(t).

From the crossover point lemma that there is c such that e ≤ latesta→c (t) ≤ maxb (t). Since
e is a maximal event in ∂a(t), it follows that e = latesta→c (t). Hence e ∈ Primarya(t). Similarly,
e = latestb→d (t) for some replica d and hence e ∈ Primaryb (t). us any maximal (∂a(t)∩∂b (t))-
event e is in Primarya(t)∩Primaryb (t).

From this result we can reason out how to compare latesta→k(t) and latestb→k(t) as follows:

Corollary . If e = latesta→k(t) and f = latestb→k(t) then

e ≤ f iff ∃g ∈ Primarya(t)∩Primaryb (t) : e ≤ g .

Proof. If e ≤ f then e ∈ ∂a(t)∩ ∂b (t). On the other hand, latestb→k(t) is later than any k-event
in ∂b (t). us if e ∈ ∂a(t)∩ ∂b (t), e ≤ f .

us e ≤ f iff e ∈ ∂a(t)∩∂b (t) iff e is dominated by some maximal element h of ∂a(t)∩∂b (t),
iff e is dominated by g ∈ Primarya(t)∩Primaryb (t) (by Lemma ).

us solving the problem of comparing latesta→k(t) and latestb→k(t) is equivalent to perform-
ing the check in corollory  which requires us to maintain the partial order relation between the
primary events of replicas. Since the comparison problem is reduced to finding a particular max-
imal element in the intersection of Primarya(t) and Primaryb (t), we need to label these events
uniquely. In our earlier solution we only assigned labels to the primary update events. However our



current solution relies on the primary events which change with not just the update events, but also
with the synchronization events. Hence we need to assign labels even to synchronization events.

However care must be taken to ensure that whenever two primary events latesta→i (t) and
latestb→ j (t) are assigned the same label, then they are indeed the same events. Otherwise the solu-
tion outlined above for comparing corresponding primary events would not work. us whenever
we label a new Sab event, we need to pick a label that is not currently in use for labelling any other
primary event. We need to make this decision by looking at the local information of a and b . Since
the information in the primary events is not sufficient, we need to maintain secondary events.

Definition . Let a be any replica and t = (E ,≤,λ) be a trace. en the secondary information for
a in t , denoted Secondarya(t), is defined as

Secondarya(t) = {latesta→b→c (t) | b , c <N}.
e following result relates the primary events corresponding to a replica a and the secondary

events of replica a.

Lemma . For any replicas b and c in a trace t = (E ,≤,λ), if latestb→c (t) is an a-event then
latestb→c (t) ∈ Secondarya(t)

Proof. e proof is very similar to the one for Lemma . We need to show that latestb→c (t) =
latesta→d→i (t) for some d , i < N . If maxb (t) ∈ ∂a(t), then latestb→c (t) = latestb→c (∂a(t)) =
latesta→b→c (t).

If maxb (t) ̸∈ ∂a(t), since latestb→c (t) is also an a-event, latestb→c (t) ∈ ∂a(t). By the crossover
point lemma we can find d such that latestb→c (t) ≤ latesta→d (t) ≤ maxb (t). Since latestb→c (t)
is the maximal c event in ∂b (t), we have latesta→d→c (t) = latestb→c (t). us latestb→c (t) ∈
Secondarya(t).

Just as in the previous section, we can update secondary information “locally”, as a run pro-
ceeds. Given two version vectors Va(t) and Vb (t), comparing V k

a (t) and V k
b
(t) is equivalent to

comparing luk
a→k(t) with luk

b→k(t). When luk
a→k(t) and luk

b→k(t) are not equal, comparing them
is equivalent to comparing the primary events latesta→k(t) and latestb→k(t). We will show that
this comparison can be performed by maintaining an unambiguous labelling of the primary events
and secondary events.

If our purpose was to decide if Va(t) dominates Vb (t) or if they are incomparable, then the
primary and secondary information would suffice. However, if we also want to verify whether the
states of the two replicas are the same, we have to show that for each k, luk

a→k(t) = luk
b→k(t). For

this we maintain the primary update information. Note that this is different from the primary
update information we used in the previous solution.

Definition . For any replica a and an ideal t = (E ,≤,λ), the primary update information, denoted
PrimaryUpdatea(t), is the indexed set {luk

a→k(t) | k ∈ [N]}.
However during an update event of replica k, we need to assign a label to this new event luk

k→k(t)
which is different from the update event luk

a→k(t) for any other replica a. Since it is not guaranteed
that the primary update event luk

a→k(t) is also a primary event for some replica, secondary infor-
mation would not be sufficient to choose a unique label for the new update event luk

k→k(t
′). Hence

we maintain secondary update information.



Definition . For any replica a and a trace t = (E ,≤,λ), the secondary update information denoted
as SecondaryUpdatea(t) is the indexed set {luk

a→b→k(t) | b , k <N}.
For any replica a, we can show the relationship between the primary update information of a

replica k corresponding to the replica a and the secondary update information for a.

Lemma . For any trace t = (E ,≤,λ) and replicas a, b , lua
b→a(t) ∈ SecondaryUpdatea(t).

Proof. Once again, the proof is similar to the lemma . We need to show that for all a, b , there is
c such that lua

b→a(t) = lua
a→c→a(t). If maxb (t) ∈ ∂a(t), then lua

b→a(t) = lua
a→b→a(t) and we are

done.
Otherwise we use the crossover lemma to find a c such that lua

b→a(t) ≤ latesta→c (t) and
latesta→c (t)≤maxb (E). It then follows that lua

b→a(t)≤ lua
a→c→a(t) and lua

a→c→a(t)≤ lua
b→a(t),

and we are done.

Definition . For any trace t = (E ,≤,λ) and replica a, we define the “local” partial order ≤t
a as

follows:
e ≤t

a e ′ iff [e ′ ∈ Primarya(t) and (e ̸∈ Primarya(t) or e ≤ e ′)].

We now have all the definitions and tools with us to provide a bounded representation for
version vector matrices.

eorem . Let α be a run and α′ = α ·U a, t = t (α) = (E ,≤,λ) and t ′ = t (α′) = (E ∪{emax},≤′
,λ′). en:

. latesta→a(t
′) = lua

a→a(t
′) = emax.

. for c , d <N , if ¬(c = d = a), latestc→d (t
′) = latestc→d (t) and lud

c→d (t
′) = lud

c→d (t).

. latesta→a→a(t
′) = lua

a→a→a(t
′) = emax.

. for c , d , i < N , if ¬(c = d = i = a), latestc→d→i (t
′) = latestc→d→i (t) and lui

c→d→i (t
′) =

lui
c→d→i (t).

. for e , e ′ ∈ Primarya(t
′), e ≤t ′

a e ′ iff e ≤t
a e ′ or e ′ = emax.

Proof. Straightforward. All parts follow from the definitions.

eorem . Let α be a run and α′ = α ·Sab , t = t (α) = (E ,≤,λ) and t ′ = t (α′) = (E ∪{emax},≤′
,λ′). For each i ̸∈ {a, b}, define wi as follows:

wi =

(
a if ∃ j , k : latestb→i (t)≤t

b
latestb→ j (E) = latesta→k(t)

b otherwise

en:

. for c , i ∈ {a, b}, latestc→i (t
′) = emax, lui

c→i (t
′) = lui

i→i (t).

. for c ̸∈ {a, b}, i <N , latestc→i (t
′) = latestc→i (t) and lui

c→i (t
′) = lui

c→i (t).



. for c ∈ {a, b}, i ̸∈ {a, b}, latestc→i (t
′) = latestwi→i (t) and lui

c→i (t
′) = lui

wi→i (t).

. for c , i ∈ {a, b}, j <N , latestc→i→ j (t
′) = latesti→ j (t

′) and lu j
c→i→ j (t

′) = lu j
i→ j (t

′).

. for c ̸∈ {a, b}, i , j <N , latestc→i→ j (t
′) = latestc→i→ j (t) and lu j

c→i→ j (t
′) = lu j

c→i→ j (t).

. for c ∈ {a, b}, i ̸∈ {a, b}, j < N , latestc→i→ j (t
′) = latestwi→i→ j (t) and lu j

c→i→ j (t
′) =

lu j
wi→i→ j (t).

. for c ∈ {a, b} and e , e ′ ∈ Primaryc (t
′), e ≤t ′

c e ′ iff e ≤t
a e ′ or e ≤t

b
e ′ or e ′ = emax.

Proof. To begin with, we observe that for any i < N (and in particular for i ̸∈ {a, b}), either
latestb→i (t) ≤ latesta→i (t) or latestb→i (t) < latesta→i (t). It now follows from Corollary  and
the definition of wi that latestwi→i (t) =max(latesta→i (t), latestb→i (t)). Now we prove the various
parts in the theorem.

. Immediate from the definitions.

. Immediate from the definitions.

. latestc→i (t
′) =max(latesta→i (t), latestb→i (t)) = latestwi→i (t). Hence lui

c→i (t
′) = lui

wi→i (t).

. Immediate from the definitions and the fact that emax is an a-event and a b -event.

. Immediate from the definitions.

. Since latestc→i→ j (t
′) = latesti→ j (↓ latestc→i (t

′)) and latestc→i (t
′) = latestwi→i (t), it follows

that latestc→i→ j (t
′) = latestwi→i→ j (t). It follows from this that lu j

c→i→ j (t
′) = lu j

wi→i→ j (t).

. Clearly if e ′ = emax or e ≤t ′
a e ′ or e ≤t

b
e ′, it follows that e ≤′ e ′ and hence e ≤t ′

c e ′. On
the other hand, suppose e ≤t

c e ′ and e ′ ̸= emax. is means that e , e ′ ∈ Primarya(t) ∪
Primaryb (t) and e ≤ e ′. We have the following cases to consider:

e ′ ∈ Primaryb (t): Since e ∈ Primaryc (t
′), it follows that for some k <N , e = latestc→k(t

′) =
max(latesta→k(t), latestb→k(t)). Suppose e ′ = latestb→l (t). en latestb→k(t) ≤ e ≤
latestb→l (t). But e is a k-event in ∂b (t) and so e ≤ latestb→k(t). us it follows that
e = latestb→k(t) ∈ Primaryb (t). us e ≤t

b
e ′.

e ′ ∈ Primarya(t): By an argument symmetric to that in the previous case, we can show that
e ≤t

a e ′.



. Labelling

Let {Li j | i ≤ j < N} be a collection of mutually disjoint sets of labels, each of size 4N + 1. Let
L =∪i≤ j<NLi j ∪ {l⊥}. Also, for any trace t = (E ,≤,λ), let P (t) = {latesta→b (t) | a, b < N},
and U (t) = {lub

a→b (t) | a, b <N}.
Definition . Let t = (E ,≤,λ) be a trace. We say that (ρ,σℓ,σu ,τℓ,τu ,⊴0, . . . ,⊴N−1) is a validL -labelling for t iff:

• ρ : E →L is a function such that:

– for all e ∈ E , if λ(e) = I , ρ(e) = l⊥.
– for all e ∈ E and a <N , if λ(e) = U a , ρ(e) ∈Laa .

– for all e ∈ E and a ≤ b <N , if λ(e) = Sab , ρ(e) ∈Lab .

– for all e , e ′ ∈ P (t), if ρ(e) = ρ(e ′), then e = e ′.
– for all e , e ′ ∈U (t), if ρ(e) = ρ(e ′), then e = e ′.

• σℓ : [N]2→L is a function such that σℓ(a, b) = ρ(latesta→b (t)).

• σu : [N]2→L is a function such that σu(a, b) = ρ(lub
a→b (t)).

• τℓ : [N]3→L is a function such that τ(a, b , i) = ρ(latesta→b→i (t)).

• τu : [N]3→L is a function such that τ(a, b , i) = ρ(lui
a→b→i (t)).

• for all a ∈ [N], ⊴a is a partial order onL such that

for all e , e ′ ∈ Primarya(t) : ρ(e)⊴a ρ(e
′) iff e ≤ e ′

eorem . Let α be a run and t = t (α) = (E ,≤,λ). en there is a validL -labelling for t which,
further, is locally computable.

Proof. We define a labelling valid for t by induction on the length of α.

α= I : In this case take ρ(e⊥) = l⊥, σℓ(a, b) = σu(a, b) = l⊥, and τℓ(a, b) = τu(a, b) = {l⊥}.
We also take l⊥ ⊴a l0 for all a. It is an immediate observation that (ρ,σℓ,σu ,τℓ,τu ,⊴0
, . . . ,⊴N−1) is a valid labelling for t .

α= α′ · o: Suppose t ′ = t (α′) = (E ′,≤′,λ′), E \ E ′ = {emax}, and let (ρ′,σ ′
ℓ
,σ ′u ,τ′

ℓ
,τ′u ,⊴′0

, . . . ,⊴′N−1) be a validL -labelling for t ′.
We now define the new labelling functions ρ,σℓ,σu ,τℓ,τu for t . ere are two cases.

o =U a: Let la be the label with least index inLaa\
∪

j<N τ
′
u(a, j). (ere is one such, since

Laa is of size >N and there are at most N events of the form lua
a→ j→a(t

′).)
We define ρ as follows:

ρ(e) =

(
la if e = emax

ρ′(e) otherwise



Observe from eorem  that for e ∈ P (t), either e = emax and ρ(e) = la or e ∈ P (t ′)
and ρ(e) = ρ′(e) ̸= la. us for e , e ′ ∈ P (t), if ρ(e) = ρ(e ′) then either e = e ′ = emax
or e , e ′ ∈ P (t ′) and ρ′(e) = ρ′(e ′), whence by induction hypothesis e = e ′.
Similarly from eorem , for e ∈ U (t), either e = emax and ρ(e) = la or e ∈ U (t ′)
and ρ(e) = ρ′(e) ̸= la. us for e , e ′ ∈U (t), if ρ(e) = ρ(e ′) then either e = e ′ = emax
or e , e ′ ∈U (t ′) and ρ′(e) = ρ′(e ′), whence by induction hypothesis e = e ′.
We define σℓ as follows:

σℓ(c , d) =

(
la if c = d = a
σ ′
ℓ
(c , d) otherwise

We define σu as follows:

σu(c , d) =

(
la if c = d = a
σ ′u(c , d) otherwise

We define τℓ as follows:

τℓ(c , d , i) =

(
la if c = d = i = a
τ′
ℓ
(c , d , i) otherwise

We define τu as follows:

τu(c , d , i) =

(
la if c = d = i = a
τ′u(c , d , i) otherwise

We define ⊴a as follows:

l ′ ⊴a l ′′ iff l ′′ = la or (l ′′ ̸= la and l ′ ⊴′a l ′′).

It is clear that from the assumptions onσ ′
ℓ
,σ ′u ,τ′

ℓ
,τ′u ,⊴′a and eorem  thatσℓ,σu ,τℓ,τu ,

and ⊴a satisfy the conditions for a valid labelling of t .

o = Sab : Assume w.l.o.g. that a < b . Let lab be the label with least index in Lab \∪
j<N

�
τ′
ℓ
(a, j)∪τ′

ℓ
(b , j)
�
. (ere is one such, since Lab is of size > 4N and there

are at most 4N events e with λ′(e) = Sab in Secondarya(t
′)∪Secondaryb (t

′) – namely
the events latestc→ j→d (t

′), for c , d ∈ {a, b} and j <N .)
We define ρ as follows:

ρ(e) =

(
lab if e = emax

ρ′(e) otherwise

Observe from eorem  that for e ∈ P (t), either e = emax andρ(e) = lab or e ∈ P (t ′)
and ρ(e) = ρ′(e) ̸= lab . us for e , e ′ ∈ P (t), if ρ(e) = ρ(e ′) then either e = e ′ = emax
or e , e ′ ∈ P (t ′) and ρ′(e) = ρ′(e ′), whence by induction hypothesis e = e ′.



Similarly from eorem , U (t) ⊆ U (t ′) and ρ(e) = ρ′(e) for e ∈ U (t). us
for e , e ′ ∈ U (t), if ρ(e) = ρ(e ′) then e , e ′ ∈ U (t ′) and ρ′(e) = ρ′(e ′), whence by
induction hypothesis e = e ′.
For i ̸∈ {a, b}, define wi as below:

wi =

(
a if ∃ j , k : σℓ(b , i)⊴b σℓ(b , j) = σℓ(a, k)
b otherwise

We define σℓ as follows:

σℓ(c , i) =


lab if c , i ∈ {a, b}
σ ′
ℓ
(c , i) if c ̸∈ {a, b}

σ ′
ℓ
(wi , i) otherwise

We define σu as follows:

σu(c , i) =


σ ′u(i , i) if c , i ∈ {a, b}
σ ′u(c , i) if c ̸∈ {a, b}
σ ′u(wi , i) otherwise

We define τℓ as follows:

τℓ(c , i , j) =


σℓ(i , j) if c , i ∈ {a, b}
τ′
ℓ
(c , i , j) if c ̸∈ {a, b}
τ′
ℓ
(wi , i , j) otherwise

We define τu as follows:

τu(c , i , j) =


σu(i , j) if c , i ∈ {a, b}
τ′u(c , i , j) if c ̸∈ {a, b}
τ′u(wi , i , j) otherwise

For c ∈ {a, b}, define ⊴c as follows:

l ′ ⊴c l ′′ iff l ′′ = lab or
�

l ′′ ̸= lab and (l ′ ⊴′a l ′′ or l ′ ⊴′b l ′′)
�

.

It is clear that from the assumptions on σ ′
ℓ
,σ ′u ,τ′

ℓ
,τ′u ,⊴′a,⊴′b and eorem  that

σℓ,σu ,τℓ,τu ,⊴a, and ⊴b satisfy the conditions for a valid labelling of t .

. Complexity of our Solution

e total number of labels in use is at most 4.N 3. At every stage of a run we need to 2.N 2 labels
(corresponding to σℓ and σu , N linear orders of N elements each, and 2.N 3 labels (corresponding
to τℓ and τu). us the overall amount of information that needs to be stored is O(N 3 logN),
which compares favourably to the O(N 4 logN) space that the earlier solution takes (to represent
all the slices of all version vector matrices).





Conclusion and Summary

In this work, we have have shown that version vectors which are used in distributed systems to keep
track of the states of the replicas do have a bounded representation. We introduced framework of
traces using which we reworked the proofs from an earlier work which also provided a bounded
representation for version vectors. We used the insights from this proof along with the results used
in solving the gossip problem to arrive at a more efficient bounded representation for version vectors.

ere are couple of interesting questions that one can pursue in this line of work. e bounded
representation of a version vector presented in our work requires O(N 3 logN). Is this bound tight?
Also the mode of communication used by the replicas in the model we looked at was pairwise
communication. However, if we look at the model where the replicas use a different mode of com-
munication, say message passing, then do the version vectors still have a bounded representation?
What sort of restrictions should we place on the channels to achieve a bounded representation?

ese questions have not been explored in our work. So in the future we hope to address some
of them.



Bibliography

[AAB] José Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero. Bounded version vec-
tors. In DISC, pages –, .

[GL] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, ():–, .

[MS] Madhavan Mukund and Milind A. Sohoni. Keeping track of the latest gossip in a dis-
tributed system. Distributed Computing, ():–, .

[SS] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv., ():–
, .



