Quantum Mechanics I: Quiz

Total: 15 marks

NOTE: The harmonic oscillator creation-annihilation operators are $a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i p}{m \omega}\right)$ and its Hermitian conjugate: they satisfy $\left[a, a^{\dagger}\right]=1$. The action on the states is $a|n\rangle=\sqrt{n}|n-1\rangle, a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$.
(1) From the Heisenberg equation of motion, find the time evolution equation for the operator $V(x)=\frac{1}{2} m \omega^{2} x^{2}$ corresponding to the potential energy (using the expression for product operator commutators). [4 mks]
(2) Say the harmonic oscillator is in the ground state $|0\rangle$ initially. It is subjected to a sharp impulse-like interaction that switches on for a very short time Δt and then switches off. The Hamiltonian for this interaction is $H_{\text {int }}=\lambda x^{4}$, where x is the position coordinate. (a) Expand out the time evolution operator $U_{\text {int }}(t)=e^{-i H_{\text {int }} t}$ to linear order for this impulse interaction. This is a good approximation since Δt is very small (and the interaction strength λ is also assumed to be small). [3 mks.]
(b) Evaluate carefully the time evolved state after the interaction has switched off using the evolution operator in (a), using the expression for the position operator in terms of the creation-annihilation operators. [5 mks]
(c) Calculate the probability that the system, after the impulse interaction has switched off, is in the excited state $|n\rangle$. For nonzero probability, how large can n be under the assumptions and approximations of (a), (b) ? What happens when the time Δt of interaction is increased ? [3 mks]

