Quantum Mechanics I: End-sem examination

Total: 50 marks

(1) Consider a particle of mass m in a 1-dimensional box. The potential has the form $V(x) = \infty$, x < 0, x > c, $V(x) = V_0$, a < x < b, V(x) = 0, 0 < x < a, b < x < c. Find the quantization condition for stationary state energy levels for energies $E > V_0$, and the corresponding wave-function. In the limit of E much larger than V_0 , show that your resulting wave-function and quantization condition reduce to the familiar expressions for a particle in a box with no internal "bump" (i.e. with $V_0 = 0$). [11 mks]

(2) A photon is emitted when a hydrogen atom transits between neighbouring stationary energy levels n + 1 and n. What is the minimum de Broglie wavelength of the electrons emitted when such photons fall on a metal of workfunction W_0 if the photon energy is known to be above the threshold ? If $W_0 = 3$ eV, what is the maximum n for which this phenomenon is possible ? [5 mks]

(3) A particle of mass m in a box (potential $V(x) = \infty, x < 0, x > a$ and V(x) = 0, 0 < x < a) is initially (at t = 0) in a state $\psi(x) = 1, x < \frac{a}{2}, \psi(x) = 0, x > \frac{a}{2}$. What is the coefficient of the energy level n of the wavefunction? Use the normalized stationary wavefunctions $\sqrt{\frac{2}{a}} \sin(\frac{n\pi x}{a})$. Write down the wavefunction for the time evolved state at a later time t. [11 mks]

(4) Using the angular momentum algebra $[L_x, L_y] = i\hbar L_z$, etc, and the eigenstates $L^2|l,m\rangle = \hbar^2 l(l+1)|l,m\rangle$, $L_z|l,m\rangle = m\hbar|l,m\rangle$, find the coefficient c_{lm}^+ in $L_+|l,m\rangle = c_{lm}^+|l,m+1\rangle$, where $L_+ = L_x + iL_y$ is the raising operator. [7 mks]

(5) Recall the definitions $a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} (x - \frac{ip}{m\omega})$ and its Hermitian conjugate, satisfying $[a, a^{\dagger}] = 1$, and $a|n\rangle = \sqrt{n}|n-1\rangle$, $a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$, for the harmonic oscillator: in the Schrödinger position space representation with $p = -i\hbar\partial_x$, the a, a^{\dagger} are differential

operators. Derive the functional form of the ground state wavefunction $\psi_0(x)$. Then evaluate the position space wavefunction corresponding to the excited state $|3\rangle$ to find the functional form of the third Hermite polynomial $H_3(x)$. [10 mks]

(6) Consider a potential $V(x) = V_0$, x < 0, V(x) = 0, x > 0. Find the reflection and transmission coefficients for a particle of mass m coming in from the left $x = -\infty$. [6 mks]