Quantum Mechanics I:
 End-sem examination

Total: 50 marks
(1) Consider a particle of mass m in a 1-dimensional box. The potential has the form $V(x)=\infty, x<0, x>c, \quad V(x)=V_{0}, a<x<b, \quad V(x)=0,0<x<a, b<x<c$. Find the quantization condition for stationary state energy levels for energies $E>V_{0}$, and the corresponding wave-function. In the limit of E much larger than V_{0}, show that your resulting wave-function and quantization condition reduce to the familiar expressions for a particle in a box with no internal "bump" (i.e. with $V_{0}=0$). [11 mks]
(2) A photon is emitted when a hydrogen atom transits between neighbouring stationary energy levels $n+1$ and n. What is the minimum de Broglie wavelength of the electrons emitted when such photons fall on a metal of workfunction W_{0} if the photon energy is known to be above the threshold ? If $W_{0}=3 \mathrm{eV}$, what is the maximum n for which this phenomenon is possible ? [5 mks]
(3) A particle of mass m in a box (potential $V(x)=\infty, x<0, x>a$ and $V(x)=0,0<$ $x<a$) is initially (at $t=0$) in a state $\psi(x)=1, x<\frac{a}{2}, \quad \psi(x)=0, x>\frac{a}{2}$. What is the coefficient of the energy level n of the wavefunction? Use the normalized stationary wavefunctions $\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)$. Write down the wavefunction for the time evolved state at a later time t. [11 mks]
(4) Using the angular momentum algebra $\left[L_{x}, L_{y}\right]=i \hbar L_{z}$, etc, and the eigenstates $L^{2}|l, m\rangle=\hbar^{2} l(l+1)|l, m\rangle, L_{z}|l, m\rangle=m \hbar|l, m\rangle$, find the coefficient $c_{l m}^{+}$in $L_{+}|l, m\rangle=$ $c_{l m}^{+}|l, m+1\rangle$, where $L_{+}=L_{x}+i L_{y}$ is the raising operator. [7 mks]
(5) Recall the definitions $a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i p}{m \omega}\right)$ and its Hermitian conjugate, satisfying $\left[a, a^{\dagger}\right]=1$, and $a|n\rangle=\sqrt{n}|n-1\rangle, a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$, for the harmonic oscillator: in the Schrodinger position space representation with $p=-i \hbar \partial_{x}$, the a, a^{\dagger} are differential
operators. Derive the functional form of the ground state wavefunction $\psi_{0}(x)$. Then evaluate the position space wavefunction corresponding to the excited state $|3\rangle$ to find the functional form of the third Hermite polynomial $H_{3}(x)$. [10 mks]
(6) Consider a potential $V(x)=V_{0}, x<0, V(x)=0, x>0$. Find the reflection and transmission coefficients for a particle of mass m coming in from the left $x=-\infty$. [6 mks]

