Mathematical Physics I, 2008
 Assignment 5

1. What are the dimensions of the linear vector spaces which consist of all possible linear combinations of the four vectors $|n\rangle, n=1,2, . .4$ when,
(a)

$$
|1\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad|2\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad|3\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad|4\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

(b)

$$
|1\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad|2\rangle=\left(\begin{array}{c}
\frac{-1}{3} \\
\frac{1}{\sqrt{3}} \\
\frac{\sqrt{5}}{3} \\
0
\end{array}\right) \quad|3\rangle=\left(\begin{array}{c}
\frac{-1}{3} \\
\frac{-1}{\sqrt{3}} \\
\frac{\sqrt{-5}}{3} \\
0
\end{array}\right) \quad|4\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

(c)

$$
|1\rangle=\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \quad|2\rangle=\frac{1}{2}\left(\begin{array}{c}
i \\
-1 \\
-i \\
1
\end{array}\right) \quad|3\rangle=\frac{1}{2}\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right) \quad|4\rangle=\frac{1}{2}\left(\begin{array}{c}
-i \\
-1 \\
i \\
1
\end{array}\right)
$$

2. The Pauli spin matrices are defined as,

$$
\sigma^{1} \equiv\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma^{2} \equiv\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma^{3} \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Prove that,
(a) If the commutator of two matrices A and B is defined as,

$$
[A, B] \equiv A B-B A
$$

Then,

$$
\left[\sigma^{a}, \sigma^{b}\right]=2 i \sum_{c=1}^{3} \epsilon^{a b c} \sigma^{c}
$$

(b) If the anti-commutator of two matrices A and B is defined as,

$$
\{A, B\} \equiv A B+B A
$$

Then,

$$
\left\{\sigma^{a}, \sigma^{b}\right\}=2 \delta_{a b}
$$

(c) If the trace of a matrix A is defined as,

$$
\operatorname{tr} A \equiv \sum_{i=1}^{2} A_{i i}
$$

and

$$
\vec{v} \cdot \vec{\sigma} \equiv \sum_{a=1}^{3} v_{i} \sigma_{i}
$$

Then

$$
\frac{1}{2} \operatorname{tr}(\vec{u} \cdot \vec{\sigma} \vec{v} \cdot \vec{\sigma})=\vec{u} \cdot \vec{v}
$$

(d)

$$
\frac{1}{4 i} \operatorname{tr}(\vec{u} \cdot \vec{\sigma} \vec{v} \cdot \vec{\sigma} \vec{w} \cdot \vec{\sigma})=\vec{u} \cdot \vec{v} \times \vec{w}
$$

(e) If,

$$
e^{A} \equiv \sum_{n=0}^{\infty} \frac{1}{n!} A^{n}
$$

Then,

$$
e^{i \vec{v} \cdot \vec{\sigma}}=\cos |\vec{v}|+i \frac{\vec{v}}{|\vec{v}|} \sin |\vec{v}|
$$

3. Given an $N \times N$ matrix A with components $A_{i j}$, the determinant of A is defined as,

$$
|A|=\sum_{P} \epsilon_{P} \prod_{i=1}^{N} A_{i P(i)}
$$

where, P denotes a permutation of the integers $1,2, \ldots, N$, defined by $i \rightarrow P(i) . \epsilon_{P} \equiv 1$ for even permutations and $\epsilon_{P} \equiv-1$ for odd permutations.
The co-factor of the $(i j)$ th element is defined as follows. For every $(i j)$, define a $N-1 \times N-1$ matrix $M^{(i j)}$ which is obtained from A by deleting the i th row and j th column. The cofactor is then defined as,

$$
c_{i j}=(-1)^{(i+j)}\left|M^{(i j)}\right|
$$

Prove that

$$
|A|=\sum_{i=1}^{N} a_{1 i} c_{1 i}
$$

4. Prove that for $N \times N$ matrices:
(a)

$$
|A B|=|A||B|
$$

(b)

$$
|\lambda A|=\lambda^{N}|A|
$$

where λ is a complex number.
(c)

$$
|A|=\left|A^{T}\right|
$$

(d)

$$
|A|=\left|A^{\dagger}\right|^{*}
$$

(e)

$$
\left|A^{-1}\right|=|A|^{-1}
$$

(f) Prove that the determinant of a matrix is unchanged if a row (or column) is added to another row (or column)
(g) Prove that the determinant of a matrix is zero if two rows (or columns) are equal.
5. Prove that
(a)

$$
\left|\begin{array}{cc}
1 & 1 \\
x_{1} & x_{2}
\end{array}\right|=\left(x_{2}-x_{1}\right)
$$

(b)

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2}
\end{array}\right|=\left(x_{3}-x_{2}\right)\left(x_{3}-x_{1}\right)\left(x_{2}-x_{1}\right)
$$

(c) If,

$$
A_{i j}=\left(x_{j}\right)^{i-1}, i, j=1,2, \ldots, N
$$

Then,

$$
|A|=\prod_{i=j+1}^{N} \prod_{j=1}^{N}\left(x_{i}-x_{j}\right)
$$

This is called the Vandermonde determinant.
6. If the secular equation of a $N \times N$ hermitian matrix A is,

$$
\sum_{n=1}^{N} a_{n} \lambda^{n}=0
$$

Then prove that,

$$
\sum_{n=1}^{N} a_{n} A^{n}=0
$$

This statement that that a matrix satisfies its secular equation is true in general and not just for hermitian matrices. It is known as the Cayley-Hamilton theorem.
7. Compute the eigenvalues and eigenvectors of

$$
h=\vec{k} \cdot \vec{\sigma}
$$

where the notation is same as in question 2c and

$$
\begin{aligned}
k_{1} & =k \sin \theta \cos \phi \\
k_{2} & =k \sin \theta \sin \phi \\
k_{3} & =k \cos \theta
\end{aligned}
$$

8. If A is an $N \times N$ matrix and B an $M \times M$ matrix. Then $C=A \otimes B$ is an $N M \times N M$ matrix defined as,

$$
C_{i k, j l} \equiv A_{i j} B_{k l}
$$

Prove that,
(a)

$$
\operatorname{Tr} A \otimes B=\operatorname{tr} A \operatorname{tr} B
$$

(b)

$$
|A \otimes B|=|A||B|
$$

(c)

$$
A \otimes B C \otimes D=A C \otimes B D
$$

9. Find the eigenvalues and eigenvectors of the following matrices, formed out of direct products of the three Pauli spin matrices defined in question 2
(a)

$$
h=\sigma^{3} \otimes \sigma^{3}
$$

(b)

$$
h=\sigma^{3} \otimes \sigma^{1}
$$

(c)

$$
h=\sigma^{1} \otimes \sigma^{1}+\sigma^{2} \otimes \sigma^{2}+\sigma^{3} \otimes \sigma^{3}
$$

10. Find the eigenvalues and eigenvectors of the following matrices:
(a)

$$
U=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

(b)

$$
U=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

(c)

$$
U=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

(d)

$$
\begin{aligned}
U_{i j} & =\delta_{i+1, j} \quad i<N \\
U_{N j} & =\delta 1 j
\end{aligned}
$$

