Mathematical Physics I, 2008
 Assignment 2

1. Prove the following identities:

$$
\begin{align*}
\sum_{k=1}^{3} \epsilon_{i j k} \epsilon_{l m k} & =\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l} \tag{1}\\
\vec{A} \times \vec{B} \times \vec{C} & =\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B}) \tag{2}\\
(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D}) & =(\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D})-(\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C}) \tag{3}
\end{align*}
$$

2. A curve is defined by,

$$
\begin{equation*}
\vec{x}(t)=\vec{x}_{0}+\vec{u} t+\frac{1}{2} \vec{a} t^{2} \tag{4}
\end{equation*}
$$

(a) Prove that this curve lies in a plane.
(b) Compute the normal to this plane.
(c) Prove that a plane can always be specified by the equation:

$$
\begin{equation*}
\vec{a} \cdot \vec{x}=1 \tag{5}
\end{equation*}
$$

Find the vector \vec{a} for the plane containing the curve $\vec{x}(t)$
(d) Choose a convenient coordinate system and show that the curve is a parabola.
3. Consider the surface specified by the equation,

$$
\begin{equation*}
z=e^{-\frac{\left(x^{2}+y^{2}\right)}{2 a^{2}}} \tag{6}
\end{equation*}
$$

(a) Compute the tangent planes at $x=y=0, x=a, y=0$ and $x=4 a, y=0$
(b) At a given distance, $r\left(r=\sqrt{x^{2}+y^{2}}\right)$, from the origin find the direction of the steepest slope.
(c) Find the distance r where the slope is maximum and compute it.
4. Consider the vector field,

$$
\begin{equation*}
\vec{A}(\vec{x})=a(r) \vec{x}, \quad r=\sqrt{\vec{x} \cdot \vec{x}} \tag{7}
\end{equation*}
$$

(a) Compute $\vec{\nabla} \cdot \vec{A}$ and $\vec{\nabla} \times A$.
(b) Find the function $a(r)$ for which the divergence vanishes everywhere except at the origin. Interpret this result in terms of the density of the lines of force.
5. Consider the vector field,

$$
\begin{equation*}
\vec{A}(\vec{x})=a(r) \vec{x} \times \hat{z}, \quad r=\sqrt{\vec{x} \cdot \vec{x}} \tag{8}
\end{equation*}
$$

(a) Compute $\vec{\nabla} \cdot \vec{A}$ and $\vec{\nabla} \times A$.
(b) Find the function $a(r)$ for which the curl vanishes everywhere except at the origin. Interpret this result in terms of the density of the lines of force.

