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1. The Poisson integral formula

We consider the closed unit disk, U : |z| ≤ 1. Let f(θ) be a given continuous function for
0 ≤ θ ≤ 2π. We consider the problem of finding a solution to Laplace’s equation in

0 ≤ r < 1. Thus we seek u(r, θ) satisfying:

1

r

∂

∂r
(r

∂u

∂r
) +

1

r2

∂2u

∂θ2
= ∇2u

= 0

and the boundary condition , u(1, θ) = f(θ). This is called the Dirichlet problem for the unit
disk. We have already seen how knowing a function of a complex variable on the
boundary of a closed curve we can calculate its interior values with Cauchy’s integral

formula. We are going to solve the Dirichlet problem for the unit circle using this result.

Let z = reiθ; r < 1; 0 ≤ θ < 2π. Setting ζ = eiφ, dζ = iζdφ. Now suppose f(z) is
holomorphic in U . Then, Cauchy’s integral formula gives,

f(z) =
1

2πi

I

f(ζ)dζ

ζ − z

=
1

2π

Z 2π

0

f(ζ)ζ

ζ − z
dφ (1)
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1. Poisson formula: contd.

Now, for any |z| < 1, the complex number, z∗ = 1
z̄

must lie outside U . From Cauchy’s

theorem , the function f(ζ)
ζ−z∗

is analytic on and within the unit disk and we have the
relation,

1

2πi

I

f(ζ)dζ

ζ − z∗
=

1

2π

Z 2π

0

f(ζ)ζ

ζ − z∗
dφ

= 0

Since on the unit circle ζ̄ = 1
ζ

, we see that,

1

2π

Z 2π

0

f(ζ)ζ

ζ − z∗
dφ =

1

2π

Z 2π

0

f(ζ)z̄

z̄ − ζ̄
dφ

= 0 (2)

Now subtracting/adding Eq.(2) from/to Eq.(1), we obtain,

f(z) =
1

2π

Z 2π

0
f(ζ)

»

ζ

ζ − z
±

z̄

ζ̄ − z̄

–

dφ (3)
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2.1 The Poisson kernel

Consider the + sign first: clearly,
»

ζ

ζ − z
±

z̄

ζ̄ − z̄

–

=
1 − r2

|ζ − z|2
(4)

The function the right is purely real and positive and is a function of r, (θ − φ). It is called
the Poisson Kernel for the unit circle. It follows that,

1 − r2

|ζ − z|2
=

1 − r2

1 − 2r cos(θ − φ) + r2
(5)

f(z) =
1

2π

Z 2π

0
f(ζ)(

1 − r2

|ζ − z|2
)dφ (6)

We may now separate real and imaginary parts in the last equation and letting,
f(z) = u(r, θ) + iv(r, θ), obtain the relations,

u(r, θ) =
1

2π

Z 2π

0
u(φ)

1 − r2

1 − 2r cos(θ − φ) + r2
dφ (7)

v(r, θ) =
1

2π

Z 2π

0
v(φ)

1 − r2

1 − 2r cos(θ − φ) + r2
dφ (8)
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2.2 The Poisson formulae: discussion

In these Poisson formulae , we see that the interior values of the conjugate harmonic
functions u(r, θ), v(r, θ) are expressed in terms of their respective values on the
boundary. However, the remarkable property of analytic functions is that if one of these
harmonic functions is known, the other can be calculated!

To see this, we take the negative sign in Eq.(3), obtaining,

1 − 2ζz̄ + |z|2

|ζ − z|2
= 1 +

2iIm(zζ̄)

|ζ − z|2
(9)

f(z) =
1

2π

Z 2π

0
f(ζ)

»

1 +
2iIm(zζ̄)

|ζ − z|2

–

dφ (10)

From Cauchy’s integral formula, Eq.(1), we get Gauss’ Mean Value Theorem :

f(0) =
1

2π

Z 2π

0
f(eiφ)dφ (11)
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2.3 The Poisson integral: discussion

Taking the imaginary part of Eq.(10), we obtain finally,

v(r, θ) = v(0) +
1

π

Z 2π

0
u(φ)

r sin(θ − φ)

1 − 2r cos(θ − φ) + r2
dφ

(12)

This expresses v(r, θ) in terms of the boundary values of its harmonic conjugate,
u(φ). The formulae may be combined to give:

f(z) = iv(0) +
1

2π

Z 2π

0
u(φ)

ζ + z

ζ − z
dφ (13)

We assumed that f(z) is analytic even on the boundary.

It can be shown that for any continuous u(φ) on the unit circle, the Poisson integral,
Eq.(7) defines a harmonic function u(r, θ) within the unit disk which tends to u(φ) as
z = reiθ → eiφ.
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3.1 The Maximum-modulus Theorem

We next discuss a remarkable property of analytic functions, which is also shared by
harmonic functions.

Theorem 9.1: If f(z) is holomorphic inside and on a simple closed curve C, then the
maximum value of |f(z)| must occur on C, unless f(z) is a constant.

Proof: We know from Cauchy’s integral formula and the fact that if f(z) is holomorphic,
all positive integral powers of it are too that for any interior point z:

(f(z))n =
1

2πi

I

C

(f(ζ))n

ζ − z
dζ, n = 1, 2, ..

Taking absolute values and using the fact that as a continuous function on C, |f(ζ)|

must take its maximum value, M (say) on C, we obtain the obvious inequalities:

|f(z)|n ≤
Mn

2π

I

C

1

|z − ζ|
|dζ|

≤
LMn

2πd

where LC is the length of C and d is the minimum distance of z from C.Taking the
nth root on both sides and taking the limit as n → ∞ we get the result, |f(z)| ≤ M .
Obviously, the equality holds only if f(z) is a constant.
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3.2 Maximum-modulus principle: corollaries

Theorem 9.2: (“Minimum-modulus theorem”) If f(z) is holomorphic inside and on a simple
closed curve C, and f(z) 6= 0 in its interior, the minimum value of |f(z)| must occur on C.

Proof: Since 1/f(z) vanishes nowhere in the interior, it is holomorphic in the interior.
From the Maximum-modulus principle, |1/f(z)| cannot have its maximum value in the
interior, which means |f(z)| cannot reach its minimum inside the boundary. It must
therefore attain its minimum (since it is continuous, it will have a minimum!) on the

boundary.

Theorem 9.3: (“Max-min principle for harmonic functions”) If u(x, y) is a real, non-constant
harmonic function on and within a closed curve C, it cannot have a maximum or minimum
at an interior point (x, y).

Proof: If (x, y) is an interior point where u(x, y) has a maximum (or minimum), a
necessary condition is: ux = uy = 0. We know that since u(x, y) is a harmonic
function, uxx + uyy = 0. If (x + δx, y + δy) is any neigbouring point, we must have
from Taylor’s theorem (in real variables), u ≃ uxx(δx)2 + 2uxyδxδy + uyy(δy)2. We
see that since uxx 6= 0; uxx = −uyy , the point (x, y) cannot be a maximum or a
minimum, but must be a “saddle point”. This proves the theorem, which has interesting
applications in physics and engineering.
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4.1 Evaluation of integrals-1

Residue calculus provides a very powerful tool for the evaluation of definite integrals. We
will look at a number of typical examples of the techniques involved.

Example 1: Let f(z) be holomorphic on and within the unit circle. Let Q(z) be any
polynomial with degree m ≥ n, having isolated first order zeros, a1, .., an within the
unit circle and no zeros on the unit circle. Then the following formula holds:

1

2π

Z 2π

0

f(exp iφ)

Q(exp iφ)
exp iφdφ = Σn

i=1

f(ai)

Q′(ai)
(14)

Proof: Consider the function, f(z)/Q(z). It is analytic and single-valued on and within
the unit circle and has simple poles at ai. From the properties of polynomials, we can
write, Q(z) ≡ (z − a1)(z − a2)..(z − an)q(z), where q(z) is a polynomial having no

zeros within or on the unit circle. Plainly, the residue of the integrand at z = ai is given

by, Limz→ai (z − ai)f(z)/Q(z) =
f(ai)

Q′(ai)
. The result follows immediately from Cauchy’s

Residue Theorem .

If we set, f(z) = Q′(z), it is clear that the RHS equals n, the number of zeros of Q(z)

contained within the unit circle, exactly as would be predicted by the Argument Principle !
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4.2 Evaluation of integrals-2

Example 2: Evaluate, given a > b > 0, the integral,

I(a, b) =

Z 2π

0

dθ

(a + b cos θ)2

If z = exp iθ, cos θ = 1
2
(z + 1

z
). Consider the integral J taken over the unit circle C,

I

C
f(z)dz =

I

C

dz

z
h

a + b
2
(z + 1

z
)
i2

The poles occur at the zeros of the denominator (rationalized), when,
z2 + 2(a/b)z + 1 = 0; z = −a ± (a2 − b2)1/2)/b. Only the real pole at

z =
(a2−b2)1/2−a

b
= r1 lies within the unit circle and can possibly contribute. Note that

r1 + r2 = −2a/b; r1 − r2 = −2(a2 − b2)1/2/b. The function is, 4z
b2(z−r1)2(z−r2)2

. We

must now calculate the residue at the pole enclosed by the unit circle.
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4.3. Evaluation of integrals-2

To calculate the residue at the pole, we set: z − r1 = u. Then

4z

b2(z − r1)2(z − r2)2
=

4

b2
u + r1

u2(u − (r2 − r1))2

=
4

b2(r2 − r1)2

(u + r1)(1 + 2 u
r2−r1

+ ..)

u2

The residue then is given by,

4

b2(r2 − r1)3
(r1 + r2) =

a

(a2 − b2)3/2

We may now apply Cauchy’s Residue theorem and obtain the final result,

I(a, b) =
2πa

(a2 − b2)3/2

Obviously this method works for any function Q(cos θ, sin θ) rational in its arguments
and integrated over [0, 2π].

Although every integral obtained using the Residue Theorem can also be solved using
other techniques, it is one of the most efficient, when applicable.
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5.1 Singular and infinite integrals

I recall some basic facts about "infinite integrals" of continuous functions of a real
variable. These will turn out to be important and useful in our study of complex analysis.

Definition 9.1 If f(x) is a real, continuous function of a ≤ x < ∞, and if the limit,

Limb→∞

Z b

a
f(x)dx = I(a; f)

exists , we say that the infinite integral is convergent and that I(a; f) is the value of the
infinite integral , and write,

I(a; f) =

Z ∞

a
f(x)dx

If the limit does not exist we say that the integral is divergent . Divergence can happen
because the limiting value is either ±∞, or if there is no limit but the integral,

R b
a f(x)dx

oscillates finitely or infinitely. We can also have integrals infinite at both upper and lower
limits. Thus, if

R b
a f(x)dx = I(a, b; f) has the property:

Limb→∞Lima→−∞

Z b

a
f(x)dx = I(f)

exists, irrespective of the order of limits, the infinite integral,
R ∞
−∞ f(x)dx is convergent .
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5.2 Infinite integrals: examples

Example 1:

Z a

0
e−tdt = [−e−t]a0

= 1 − e−a

Clearly, Lima→∞(1 − e−a) = 1, hence the integral is convergent:
R ∞
0 e−tdt = 1.

Example 2: The integral,
R ∞
0 cos xdx is divergent (show why this is so!)

Example 3: If s > 0,
R a
0 xsdx = as+1

s+1
, for a > 0. Obviously,

R ∞
0 xsdx diverges to

infinity (it is unbounded as the upper limit tends to infinity).
Example 4: It is easy to show that for −1 ≤ s ≤ 0, the infinite integral,

R ∞
1 xsdx is

divergent.
Example 5: If s < −1,

R a
1 xsdx = 1

s+1
[as+1 − 1]. In this case, we have convergence

and,
R ∞
1 xsdx = 1

|s+1|
.

The above infinite integrals have continuous integrands but the limits tend to infinity. We
could also have singular integrals in which the integrand becomes unbounded (and hence
discontinuous) at either a limit or at an internal point. The following definition and
examples illustrate this:
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5.3 Singular integrals

Definition 9.2: Let f(x) be continuous in x ∈ (a, b]. Consider the integral,
I(u, b; f) =

R b
u f(x)dx; a < u ≤ b. Suppose the limit,

Limu→a+

Z b

u
f(x)dx (15)

exists as u tends to a from above. Then we say that the singular integral
R b

a f(x)dx is
convergent and is equal to this limit. It is implicit here that Limx→af(x) does not exist, as
x approaches a from above.
Example 6: Consider the integral:

R 1
u x−1/2dx = 2[1 − u1/2]; u > 0. Obviously we may

take the limit as u → 0+. However, the integrand "blows up" at x = 0. Thus, we say
that the singular integral,

R 1
0

dx
x1/2 converges to the value, 2.

Example 7: The integral,
R 1

u
dx
x

= ln( 1
u
) evidently tends to infinity as u → 0+. Hence,

we say that the singular integral,
R 1
0

dx
x

is divergent.

I next formulate some simple facts about infinite and singular integrals we shall need in
our work. The proofs will be omitted but are quite simple.
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5.4. Comparison test for absolute convergence

Proposition 9.1: If f(x), assumed continuous in [a,∞) is such that its absolute value leads
to the convergent infinite integral,

R ∞
a |f(x)|dx, the infinite integral,

R ∞
a f(x)dx must

also exist. The integral is said to be absolutely convergent . If the latter integral exists, but
not the former, we say that the infinite integral,

R ∞
a f(x)dx is conditionally convergent .

Note that there are conditionally convergent integrals which are not absolutely convergent.

Proposition 9.2: If f(x) ≥ 0 and continuous in [a,∞) and
R R

a f(x) = g(R) < K, where
R > a and K is a fixed constant for any R, the infinite integral,

R ∞
a f(x)dx is convergent

and we also must have,
R ∞

a f(x)dx < K.

Proposition 9.3: If |f(x)| < g(x), where f, g are defined and continuous in [a,∞), and
R ∞

a g(x)dx is convergent . Then,
R ∞

a f(x)dx is absolutely convergent . This is the integral
analogue of the comparison test for the convergence of infinite series.

Example: Consider the important integral, I =
R ∞
1 e−x2

dx. How can we prove this
infinite integral is convergent without evaluating it? Note that for x ≥ 1, x2 ≥ x. Hence,

e−x2
≤ e−x. Since, the integral,

R ∞
1 e−xdx = e−1, the comparison test shows that I

is convergent and I < e−1. We will later evaluate the related, convergent integral,
R ∞
0 e−x2

dx. Note that our comparison function cannot be directly used in proving the
last integral is convergent! We can easily extend the results to doubly infinite and
singular integrals.
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5.5 Uniform convergence

Proposition 9.5: Let f(z, w) be a continuous function of complex variables z, w, where z

belongs to a region R and w lies on some contour C. Let f(z, w) be holomorphic in R

as a function of z for every w on C. Then, I(z; C) =
R

C f(z, w)dw is analytic in R and,
dI
dz

=
R

C
∂f
∂z

dw.

This justifies “differentiating” under the integral sign” in complex analysis. The proof is
omitted.

Definition 9.3: An infinite integral,
R ∞
0 f(z, x)dx is said to be uniformly convergent (here

f(z, x) is defined and continuous with respect to the real variable x and the complex
variable w in suitable regions) if given ǫ > 0 arbitrarily small, we can find an R depending
only upon ǫ and not on z such that, |

R x2
x1

f(z, x)dx| < ǫ for arbitrary R < x1 < x2.

Proposition 9.6: Let C be a contour going to infinity, and any bounded part of it is
rectifiable. If the conditions of the preceding proposition hold on any bounded part of C

and the integral, F (z) =
R

C f(z, w)dw is uniformly convergent , the results of Proposition
9.5 apply. Thus, uniformly convergent infinite integrals of analytic functi ons are analytic .

We will encounter several instances where these results will be useful and also the
analogue of Weierstrass’ M-test for absolute and uniform convergence of infinite/singular
integrals.
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6.1 Infinite integrals and residue calculus

Example 1: Evaluate the definite integral:

I =

Z ∞

−∞

dx

1 + x2

It is well-known that d
dx

(tan−1 x) = 1
1+x2 . It follows that the integral converges to π.

We shall integrate this using Cauchy’s residue calculus. Consider the holomorphic
function, f(z) = 1

1+z2 . It is analytic in the upper half-plane, except for the simple-pole

at z = +i. Consider a semi-circular contour C(R) running from −R to R along the
real axis and closed by the semi-circle Reiφ, 0 ≤ φ ≤ π. If R > 1, this encloses the pole
at z = i where the function has the residue, Limz→i(z − i) 1

1+z2 = 1
2i

. From Cauchy’s

residue theorem , we have:
I

C(R)

dz

1 + z2
=

Z R

−R

dx

1 + x2
+

Z π

0

Reiφidφ

1 + R2e2iφ

= (
2πi

2i
)

If we let R → ∞, the first integral tends to I whilst the second goes to zero since,

|
R π
0

Reiφidφ
1+R2e2iφ | < R

R π
0

dφ
R2−1

< πR
R2−1

upon using standard inequalities. Thus, I = π.
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6.2 Infinite integrals and residue calculus

Example 2: Evaluate the definite integral:

F (k) =

Z ∞

−∞

eikxdx

1 + x2
(k > 0)

Consider the analytic function, f(z) = eikz

1+z2 . It has simple poles at z = ±i. If

z = Reiθ; 0 < θ < π, we have on R > 1, f(Reiθ) = e(ikR cos θ−kR sin θ)

1+R2e2iθ . Thus, we

have the following deductions from Cauchy’s residue theorem, upon using the contour
C(R) of Ex. 1:

I

C(R)

eikzdz

1 + z2
=

Z R

−R

eikxdx

1 + x2
+

Z π

0
f(Reiθ)iReiθdθ

= 2πiRes(z = +i)

= 2πi(e−k/2i)

Taking the limit as R → ∞, we get the result:

F (k) = πe−k

since, |
R π
0 f(Reiθ)iReiθdθ| < R

R π
0

e−kR sin θdθ
R2−1

< πR
R2−1

→ 0.
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6.3 Infinite integrals and residue calculus

Example 3: Evaluate the definite integrals for k > 0:

G(k) =

Z ∞

−∞

x3 sin kxdx

1 + x4

H(k) =

Z ∞

−∞

x3 cos kxdx

1 + x4

Consider the analytic function, g(z) = z3eikz

1+z4 . It has simple poles at z = eiπ/4, ei3π/4,

in the upper half-plane . If z = Reiθ; 0 < θ < π, we have on

R > 1, g(Reiθ) = R3e3iθe(ikR cos θ−kR sin θ)

1+R4e4iθ . Thus, we infer using the residue theorem

and the contour C(R) of Ex. 1,2:

I

C(R)

z3eikzdz

1 + z4
=

Z R

−R

x3eikxdx

1 + x4
+

Z π

0
g(Reiθ)iReiθdθ

= 2πi[Res(z = eiπ/4) + Res(z = ei3π/4)]

Taking the limit as R → ∞, and separating real and imaginary parts, we get the
required result. First we must calculate the residues at the two simple poles and then we
must show that LimR→∞

R π
0 g(Reiθ)iReiθdθ = 0. The first part is left as an exercise

for you, but the second part is an important result called Jordan’s Lemma .
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7 Jordan’s Lemma

Theorem 9.4: Let f(z) be analytic in the upper half plane with the property,
LimR→∞f(Reiθ) = 0 uniformly in θ. Then, for any k > 0,

LimR→∞

Z π

0
eikReiθ

f(Reiθ)iReiθdθ = 0

Proof: Consider R sufficiently large so that |f(Reiθ)| < ǫ uniformly for 0 < θ < π.
Then,

|

Z π

0
eikReiθ

f(Reiθ)iReiθdθ| < 2ǫR

Z π/2

0
e−kR sin θdθ (16)

Now, either by drwing the graphs of y = sin θ and y = 2θ
π

, or by calculating the

derivative, we can show that 2
π

≤ sin θ
θ

≤ 1 for 0 ≤ θ ≤ π/2. Hence, sin θ ≥ 2θ
π

. Using
this in the integrand on the RHS of the inequality (16), we get,

|

Z π

0
eikReiθ

f(Reiθ)iReiθdθ| < 2ǫR

Z π/2

0
e−(2kR/π)θdθ

<
πǫ

k

This proves Jordan’s Lemma since ǫ is arbitrary. AT – p.20/20
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