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1.1 Some properties of Legendre functions

Special values: Using the generating function in the form:

(1− 2hz + h2)−1/2 = 1 + hP1(z) + h2P2(z) + ..

We can show that Pn(1) = 1, by expanding (1− h)−1. Similarly, Pn(−1) = (−1)n

follows by expanding (1 + h)−1. We also have Pn(0) = 0 if n is odd and

Pn(0) = (−1)n/2
1.3.5...(n−1)

2.4..n
when n is even. This follows by expanding (1 + h2)−1/2.

Zeros: The function, (z2 − 1)n has n (multiple) zeros at z = 1 and an equal number
at z = −1. It follows that Pn(z) ∝ dn

dzn
[(z2 − 1)n] = 0 must have n real roots, lying

between ±1. These roots must be unequal. If this is not true, let z∗ be a double root.
Then, Pn(z∗) = 0 = P ′n(z∗). But the Legendre equation is a second-order differential
equation with a unique non-zero solution through z = z∗. But this solution would be
identically zero if both function and its derivative vanished there! Hence we have
reached a contradiction.

Recurrence relations: If we set K(z, h) = (1− 2zh+ h2)−1/2. We have:

∂K

∂h
= −

(h− z)

(1− 2zh+ h2)3/2

(1− 2zh+ h2)
∂K

∂h
+ (h− z)K = 0
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1.2 Legendre functions: more properties

If we substitute the expansion, K = ΣhnPn(z) and equate like powers of h, we obtain
the three-term recurrence:

nPn − (2n− 1)zPn−1 + (n− 1)Pn−2 = 0 (1)

Differentiating both sides of the generating function with respect to z, we obtain,

(1− 2zh+ h2)−3/2 = Σ∞n=0h
n−1 dPn

dz

(z − h)Σ∞n=0h
n−1 dPn

dz
= Σ∞n=0nh

n−1Pn(z)

Now,
1− hz − h(z − h)

(1− 2zh+ h2)3/2
=

1

(1− 2zh+ h2)1/2

(1− hz)Σ∞n=0h
n−1P ′n − hΣ∞n=0nh

n−1Pn = K(z, h) = Σ∞n=0h
nPn

Equating like powers of h on both sides, we get,

nPn − zP ′n = −P ′n−1 (2)

(n+ 1)Pn = P ′n+1 − P ′n−1 (3)
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1.3 Legendre functions: contd.

Since Legendre polynomials are functions of cos θ = z, we may express them in terms
of trigonometric polynomials:

P0(cos θ) = 1

P1(cos θ) = cos θ

P2(cos θ) =
1

4
(3 cos 2θ + 1)

P3(cos θ) =
1

8
[5 cos 3θ + 3 cos θ]...

Pn(cos θ) = 2
1.3.5...(2n− a)

2.4.6...2n
[cosnθ +

1.n

1.(2n− a)
cos(n− 2)θ +

1.3.n.(n− 1)

1.2.(2n− a)(2n− 3)
cos(n− 4)θ + ..]

This is done by writing, K(cos θ, h) = (1− heiθ)−1/2(1− he−iθ)−1/2 and expanding
the factors using the Binomial series and equating the coef£cients of hn in both sides.
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1.4 Legendre functions: orthogonality

Legendre polynomials have the following important property:

∫ 1

−1
xkPn(x)dx = 0, k = 0, 1, 2, ..., n− 1 (4)

Proof: Using Rodrigues’ formula we have,

∫ 1

−1
xkPn(x)dx =

1

2nn!

∫ 1

−1
xk

dn

dxn
[(x2 − 1)n]dx

Repeated integration by parts using the fact that the derivatives of (x2 − 1)n lower
order than n vanish at both limits, gives the required result. This shows that,

∫ 1

−1
Pn(x)Pm(x)dx = 0,m 6= n

This can be proved directly from the equations satis£ed by the Legendre functions:

d

dx
[(1− x2)

dPn

dx
] + n(n+ 1)Pn = 0

d

dx
[(1− x2)

dPm

dx
] +m(m+ 1)Pm = 0
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1.5 Legendre-Fourier orthogonal expansion

Multiplying the £rst equation by Pm(x) and the second by Pn(x), subtracting and
integrating over [−1, 1], we see that,

∫ 1

−1
(Pm[(1− x2)P ′n]

′ − Pn[(1− x2)P ′m]′)dx = −

∫ 1

−1
(1− x2)[P ′mP

′
n − P ′nP

′
m]dx = 0

= −(n−m)(n+m+ 1)

∫ 1

−1
Pn(x)Pm(x)dx

One of the problems shows that:

∫ 1

−1
[Pn(x)]

2dx =
2

2n+ 1
, n = 0, 1, .. (5)

It can be shown that an “arbitrary” differentiable function f(x);x ∈ [−1, 1] can be
expanded in a Legendre-Fourier orthogonal expansion:

f(x) = Σ∞n=0f̂nPn(x) (6)

f̂n = (n+
1

2
)

∫ 1

−1
f(x)Pn(x)dx (7)
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2.1 Introduction to Conformal Mapping

Analytic functions have a remarkable geometrical interpretation: let w = f(z) be
analytic in some domain of the z-plane. For each value of z, we have a complex image

in the number w. Thus we can regard this as a mapping of the domain into another
domain in the w-plane. Here are some simple examples:

Ex. 1: “Translations”

Let w = z + c, where c is an arbitrary complex constant. Here, the origin in the
z-plane is moved to w = c. The orientations of the axes in both planes are preserved,
as well as lengths and angles between curves. This is a Euclidean rigid translation. It is
one-one and invertible; z = w − c being the inverse mapping.

Ex. 2: “Pure rotations”

Consider w = zeiθ , where, θ ∈ [0, 2π]. This is also invertible and leaves the origin
invariant. This is a Euclidean rigid rotation. The axes are rotated counter-clockwise through
an angle θ.

Ex. 3: “Pure scalings”

Taking w = λz, where, λ > 0. All lengths are “stretched” by the scale-factor λ,
amounting to a magni£cation for λ > 1 and a shrinking if λ < 1. Again, the
transformation is invertible and leaves the origin invariant. This is NOT a Euclidean

transformation. However, it takes straight lines into straight lines and leaves angles
invariant. Only the scales of £gures vary, not their shapes. AT – p.7/22



2.2 Analytic mappings: conformality

Let D be a domain in the z-plane and let w = f(z) be analytic there. Consider a
point z0 ∈ D. Its image in the w-plane is obviously w0 = f(z0). Let z0 + δz be a
neighbouring point in D to z0. Its image is of course, w(z0 + δz) ' w0 + f ′(z0)δz.

This shows that so long as we restrict ourselves to the immediate neighbourhood of a point the
mapping is a combination of a “stretch” with λ = |f ′(z0)| and rotation through an angle,
θ = Arg[f ′(z0)], both of which only depend upon f ′(z0). Provided the latter is
non-zero we note that the mapping is locally invertible in the neighbourhood.

Now consider two in£nitesimal segments, δz,∆z drawn from z0. The respective image
segments are, δw = f ′(z0)δz;∆w = f ′(z0)∆z.

We now have the obvious equations:

|δw| = |δz||f ′(z0)| (8)

|∆w| = |∆z||f ′(z0)| (9)

Arg[δw] = Arg[δz] + Arg[f ′(z0)] (10)

Arg[∆w] = Arg[∆z] + Arg[f ′(z0)] (11)

With the remarkable consequence that the angle between the segments δw,∆w is
exactly the same as that between their respective pre-images, δz,∆z.
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2.3 Linear mappings, inversion

The simplest analytic functions are linear. Thus, the transformation,

w(z) = az + b (12)

combines the rigid translation, rotation and magni£cation. Plainly it transforms straight
lines into straight lines and circles into circles, but does generally change location, areas,
lengths and orientation relative to the original £gure.

Consider next, the function,

w(z) =
1

z
(13)

Clearly this interchanges the origin of the z-plane with the in£nity of the w-plane and
vice versa. It is also clear that the unit circle is invariant under the mapping (ie every
point eiθ on it goes into e−iθ ).

Note that the interior of the unit circle in the z-plane (ie the set |z| < 1) goes into the
exterior of the unit circle in the w-plane. This transformation is clearly conformal except
possibly at z = 0,∞ and is called inversion with respect to the unit circle. It is its own
inverse transformation.

AT – p.9/22



2.4 Inversion and linear fractional mappings

Inversion takes straight lines and circles into straight lines and circles: If t is a real parameter,
z = at+ b, ( where a = α+ iβ; b = γ + iδ are complex constants) describes a straight
line in the z-plane. Inversion in the unit circle gives,

w =
1

at+ b

t =
1

a
(
1

w
− b) =

1

ā
(
1

w̄
− b̄)

If b/a is real, this is a straight line through w = 0. Otherwise, it is a circle, also passing
through this point. It is not hard to show that the circle, |z − c| = R is transformed by
inversion into a circle, or exceptionally into a straight line. We next consider an important
class of transformations called linear fractional/bilinear/homographic/Möbius mappings:

w =
az + b

cz + d
(14)

where a, b, c, d are arbitrary complex constants subject only to the restriction
ad− bc 6= 0. If the condition is not satis£ed and ad = bc, it is clear that the mapping
becomes w = const, and is thus not a mapping at all, so henceforth this condition is
always implied.
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2.5 Properties of linear fractional maps

We can solve for z in terms of w and obtain,

(cw − a)z = b− dw

z =
−dw + b

cw − a
(15)

Thus, the inverse of a linear fractional transformation is also a linear fractional
transformation. We note that if c = 0, the transformation becomes linear. Otherwise,

w =
a

c
+

(bc− ad)

c(cz + d)

If we apply a linear fractional transformation T1 and follow it up with another, T2, we can
see that this “product” must also be a linear fractional transformation:

w1(z) =
a1z + b1

c1z + d1

w2(w1(z)) =
a2w1 + b2

c2w1 + d2

w1 ∗ w2[z] =
a2(a1z + b1) + b2(c1z + d1)

c2(a1z + b1) + d2(c1z + d1)

=
Az +B

Cz +D
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2.6 Linear fractional maps

In “composing” two linear fractional maps, we £nd that:

A = a2a1 + b2c1

B = a2b1 + b2d1

C = c2a1 + d2c1

D = c2b1 + d2d1

This is exactly the matrix multiplication rule for the 2× 2 matrices of coef£cients of the
linear fractional transformations. Furthermore, the condition imposed amounts to saying
that the matrices must be non-singular since ad− bc is the determinant of the matrix. It
follows that the set of all linear fractional transformations form a group. The identity

transformation, w = z is represented by the identity matrix: a = 1; b = 0; c = 0; d = 1.

You should note that a non-singular matrix and its multiple by a non-zero complex
number represent the same linear fractional transformation. Thus only three parameters
are needed to specify a bilinear map. Note also that a linear fractional transformation
has the property,

dw

dz
=

ad− bc

(cz + d)2

It is therefore conformal except possibly at z = −d/c;∞.
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2.7 More about bilinear maps

Every bilinear map can be obtained through a sequence of translation, rotation, stretching

and inversion. Thus,

w =
az + b

cz + d

is equivalent to,

ζ = z +
d

c
; ξ =

1

ζ

w =
a

c
+ (

bc− ad

c2
)ξ

The equation to a circle of radius R and centre ζ is clearly,

(z − ζ)(z̄ − ζ̄) = R2

zz̄ − zζ̄ − z̄ζ −R2 + ζζ̄ = 0

If we “scale” z = αRz∗; ζ = Rζ∗, the equation becomes,

αᾱz∗z̄∗ − z∗ζ̄∗ − z̄∗ζ∗ + ζ∗ζ̄∗ − 1 = 0
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2.8 Bilinear maps of circles

Thus any equation of the form,

Azz̄ +Bz̄ + B̄z + C = 0 (16)

with A > 0, C real and B complex represents a circle. If A = 0, it degenerates to a
straight line. Since the “primitive” transformations making up a bilinear transformation
takes such an equation into one of the same form, so do bilinear maps.

We can regard a bilinear map as one which takes a point z to the point T (z) in the same

complex plane.

w(z) = z =
az + b

cz + d

cz2 + (d− a)z − b = 0

z =
(a− d)± [(a− d)2 + 4bc]1/2

2c

These are called the invariant points of the map. We can show also that every bilinear
transformation is univalent in the entire complex plane. Thus let z1 6= z2 be any two
distinct points. Then,

w1 − w2 =
(ad− bc)(z1 − z2)

(cz1 + d)(cz2 + d)
6= 0

showing that w1 6= w2.
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2.9 Bilinear invariant: the cross-ratio

Let zi : i = 1, 2, 3, 4 be any four distinct points and let wi be their images under a
bilinear transformation. Then, we have:

(w1 − w2)(w3 − w4) = [
(ad− bc)2

Π4
i=1(czi + d)

](z1 − z2)(z3 − z4)

(w1 − w4)(w3 − w2) = [
(ad− bc)2

Π4
i=1(czi + d)

](z1 − z4)(z3 − z2)

Dividing the two equations and cancelling the common fact, we obtain the remarkable
relation called the cross-ratio invariant of a bilinear transformation:

(w1 − w2)(w3 − w4)

(w1 − w4)(w3 − w2)
=

(z1 − z2)(z3 − z4)

(z1 − z4)(z3 − z2)
(17)

If three of the points are taken as given, together with their images, the fourth point can
be considered to be z = z4 and correspondingly w = w4. Thus we can write the
original bilnear map in the equivalent form:

(w1 − w2)(w3 − w)

(w1 − w)(w3 − w2)
=

(z1 − z2)(z3 − z)

(z1 − z)(z3 − z2)
(18)
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3.1 Bilinear maps and invariant points

In general, bilinear maps have two distinct invariant points. Take them to be α, β. The
most general bilinear map with these invariant points is:

w − α

w − β
= λ

z − α

z − β
(19)

where λ is a complex constant.

We can also £nd a bilinear transformation which maps the unit disk |z| < 1 into |w| < 1.
If the point z = α, |α| < 1 goes to w = 0, we must have,

w = λ
z − α

1− ᾱz
(20)

has the property that |z| = 1 goes to |w| = 1 if and only if λ = eiφ; 0 ≤ φ ≤ 2π.

The bilinear transformation which takes the upper half-plane, Im(z) > 0 into the unit
disk, |w| < 1 must obviously take the form,

w = eiφ
z − α

z − ᾱ
(21)

provided we have Im(α) > 0 since if Im(z) = 0, |w| = 1, and α in the upper
half-plane simultaneously is mapped into w = 0. Obviously |w| > 1 corresponds to the
lower half-plane. AT – p.16/22



3.2 More general conformal mappings

Consider the analytic function, f(z) = zm, where m > 1 is an integer. Evidently this
has critical points at z = 0,∞. The mapping, w = zm leaves the positive real axis

invariant. It takes the ray, z = re
iπ

m , r > 0 into the negative real axis, w = −r. Thus
the interior of the sector in the z-plane, 0 ≤ θ ≤ π

m
is mapped onto the upper half

w-plane leaving the origin and in£nity as invariant points. The inverse mapping
correspondingly maps the upper half plane to the sector.

The following idea is sometimes useful: if a smooth curve C in the z-plane (may or may
not be closed) is given parametrically by z = F (t) + iG(t);−∞ < t ≤ ∞, the
transformation, z = F (w) + iG(w) maps the real axis in the w plane to C.

Exponential map: Consider w = e
πz

a : a > 0. We see that the entire real axis,
Im(z) = 0, is mapped onto the positive real axis, with z = 0→ w = 1 and
z = −∞→ w = 0. The parallel line Im(z) = ia transforms into the negative real axis
in the w-plane, with z = ia→ w = −1 and z = ia+∞→ w = −∞. We see that this
mapping takes the strip 0 ≤ Im(z) ≤ a to the upper-half w-plane.

The sine map: Consider the mapping, w = sin( πz
a
); a > 0. Obviously the lines

z =
(±a)
2

+ it; t > 0 go into w = sin(±π
2
+ iπt

a
) = ± cosh πt

a
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3.3 Riemann’s Mapping Theorem

The fundamental problem of conformal mapping: Given a domain D in the z-plane, can it
be mapped conformally into any given domain of the w-plane? In particular, can we
map D into the unit disk Uw : |w| < 1? The answer is given by an amazing theorem
due to Riemann.

Caveat: D cannot be completely arbitrary! There is a restriction on the boundary: suppose
D has a single boundary point. We can take this to be the point at in£nity. Then if we

had a mapping function, w = f(z), it would map the whole £nite complex plane into
|w| < 1. It is therefore a bounded entire function! By Liouville’s Theorem it would have to be
a constant, meaning there is no such mapping.

Riemann’s Mapping Theorem: If D is a domain bounded by a simple closed contour C,
there exists a unique analytic function, w = f(z), which maps D conformally into |w| < 1

and also transforms a point z = a within C to the origin ( w = 0). and a given direction at
z = a into the real w-axis direction there.

The proof is dif£cult and not required! Riemann’s Theorem is intimately connected with
Dirichlet’s problem for the domain D: to £nd a harmonic function U(x, y) : (x, y) ∈ D

which takes on given boundary values on C and satis£es Laplace’s equation in D:

∂2U

∂x2
+
∂2U

∂y2
= 0 (22)
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3.4 Dirichlet’s Principle

Motivation for Riemann’s Theorem: Assume that w = f(z) exists. Clearly f(z)
z−a

6= 0 and is

regular in D. We therefore write, eφ(z) = f(z)
z−a

, and recognize that since
φ(z) = U(x, y) + iV (x, y) then it is analytic in D. Furthermore, since
w = f(z) = (z − a)eφ(z) must satisfy |w| = 1 on C, ln |z − a|+ U(x, y) = 0 on it.

All we have to do to get w(z), are the following steps, setting a = α+ iβ:
1. Solve the special Dirichlet problem in D for U(x, y;α, β) with U = − ln |z − a| on C.
2. Construct V (x, y), the conjugate harmonic function associated with U .
3. Put φ(z) = U + iV, w(z) = (z − a)eφ(z).

An important observation: The real function de£ned by,

G(x, y;α, β) =
1

2
ln[(x− α)2 + (y − β)2] + U(x, y;α, β) (23)

is harmonic in D except at (α, β) (a logarithmic singularity) and zero on C. It is called
the Green’s function for the domain and Laplace’s equation, invented by George Green

himself. Thus G implies w(z) and vice versa. This has a physical meaning! In 2-d

electrostatics the electric £eld E = −∂Φ
∂x

i− ∂Φ
∂y

j. In the absence of space-charge,

∇.E = 0→ Φ(x, y) is a harmonic function. Given D we can ask, “what is the electric
potential due to a (line) charge Q placed at z = a = α+ iβ if C is an equipotential?”
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3.5 Examples

Plainly, Φ(x, y;α, β) = − Q
2πε0

G, as a simple calculation shows. It is also known from
electrostatics that the harmonic function U which solves the Dirichlet problem stated has
the following property: among all possible differentiable functions u(x, y) in D which
satisfy the same boundary condition on C as U , the electrostatic energy, proportional to,

E[u] =

∫

D
[(
∂u

∂x
)2 + (

∂u

∂y
)2]dxdy

assumes the least value for the harmonic function U . This is known as Dirichlet’s Principle.
On physical grounds it seems obvious but is hard to prove!

Example 1: Consider the function, f(z) = − Q
2πε0

ln z = Q
2πε0

[ln r − iθ], Q being the

charge per unit length (in Coulombs). The electric £eld is purely radial, Er = Q
2πε0r

(V/m). The equipotentials are circles. Now consider, f(z) = − Q
2πε0

ln[
(z−a)
(1−zā)

].If

z = eiθ , we see that f(eiθ) = − Q
2πε0

ln[
(eiθ−a)

(e−iθ−ā)
] + i Q

2πε0
θ, ie Re[f(eiθ)] = 0.

Example 2: The complex potential Ω(z) = Φ(x, y) + iΨ(x, y) in hydrodynamics: we have,
dΩ
dz

= Φx + iΨx = Φx − iΦy = Vx − iVy gives the veocity components. The curves
Ψ = const are called stream lines. The potential Ω = V∞z;V∞ > 0, describes uniform

¤ow in the upper/lower half spaces and has Ψ = 0 on the real axis. If z = ζ + a2

ζ
,

what happens to Ψ = 0 in Ω(ζ) = V∞[ζ + a2

ζ
]; a > 0? AT – p.20/22



4.1 Concluding remarks

In this course I have tried to introduce you to the elementary principles and techniques of
Complex Analysis. This is, as I hope you appreciate, a very beautiful and powerful branch
of mathematics with countless applications in physics and engineering.

In view of the limitations on time and the fact that this is a course of mathematical methods,
I have had to present many topics at possibly insuf£cient depth.

However, if you have a committed approach to problem-solving and tackle all the
exercises, you will have acquired enough mastery to apply the methods described in this
course with con£dence.

As this is huge subject which is still actively being studied, there is an enormous
literature. I have consulted the many excellent texts available in preparing this set of 16
lectures. I attach a list for your further reference and study.
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5. Functions of a complex variable, G.F. Carrier, M. Krook and C.E. Pearson, McGraw-Hill,
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