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1.1 Bessel coefficients: generating function

We next consider a rather different approach to Bessel functions: consider the function
of two complex variables z, t defined by:

G(z, t) = e
z
2
(t− 1

t
) (1)

The function G(z, t) is clearly a single-valued analytic function of t, for 0 < |t| < ∞,
for any z. It has essential singularities at t = 0 and at infinity. It can therefore be
expanded in a Laurent series:

G(z, t) = Σ∞
n=−∞Jn(z)tn

The coefficients Jn(z) appearing in this expansion are called Bessel coefficients . We
shall shortly see that they are in fact Bessel functions of integral order in z. From
Laurent’s theorem we have,

Jn(z) =
1

2πi

I

C
u−(n+1)e

z
2
(u− 1

u
)du

where C is any closed curve encircling the origin once counter-clockwise.
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1.2 Bessel coefficients: properties

The power series for the coefficients can be obtained as follows. Setting u = 2v
z

The
above integral becomes,

Jn(z) =
1

2πi
(
z

2
)n

I

C
v−(n+1)e(v− z2

4v
)dv

The contour can be taken as the unit circle. We may expand the uniformly convergent
series in powers of z and obtain,

Jn(z) =
1

2πi
Σ∞

j=0

(−1)j

j!
(
z

2
)n+2j

I

|v|=1
v−(n+1+j)evdv

Evidently, if n + j ≥ 0, the residue at |v| = 0 is 1
(n+j)!

. When n + j is a negative

integer, the residue is zero. Hence, we get the series expansion for n ≥ 0 (and of
course an integer!):

Jn(z) = Σ∞
j=0

(−1)j

j!(n + j)!
(
z

2
)n+2j

=
zn

2nn!
[1 −

1

1!(n + 1)
(
z

2
)2 +

1

2!(n + 1)(n + 2)
(
z

2
)4..] (2)

Comparison with Eq.(12) of Lecture 14 shows that this Bessel coefficient is indeed
identical with the “Bessel function” of integer order n we considered there. AT – p.3/20



1.3 Bessel functions: contd.

When n = −m, a negative integer, we have similarly,

Jn(z) = Σ∞
j=m

(−1)j

j!(j − m)!
(
z

2
)2j−m

= Σ∞
k=0

(−1)k+m

k!(k + m)!
(
z

2
)2k+m (3)

It follows directly from this that J−n(z) = (−1)nJn(z). We can also derive some useful
recurrence relations from the generating function:

Jn−1(z) + Jn+1(z) =
2n

z
Jn(z) (4)

Jn−1(z) − Jn+1(z) = 2
dJn

dz
(5)

To prove these, first differentiate the generating formula,

e
z
2
(t− 1

t
) = Σn=+∞

n=−∞Jn(z)tn (6)

with respect to t and equate like powers of t. Secondly, differentiate with respect to z

and equate coefficients. We can also deduce the relations: d
dz

[znJn(z)] = znJn−1(z)
d
dz

[z−nJn(z)] = −z−nJn+1(z).
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2.1 Integral representations

We can derive an interesting integral representation for Jn(z) from the generating
function. Putting t = eiθ in Eq.(6), we obtain,

eiz sin θ = Σn=+∞
n=−∞Jn(z)einθ

Jn(z) =
1

2π

Z 2π

0
eiz sin θ−inθdθ (7)

We consider (briefly!) a method of solving Bessel’s equation by contour integrals which
resembles the Laplace transform closely. We wish to write the solution in the form,

y(z) = zν

Z b

a
eiztŶ (t)dt (8)

We have to determine the function Ŷ (t) and the limits a, b so that y(z) satisfies:

d2y

dz2
+

1

z

dy

dz
+ (1 −

ν2

z2
)y = 0 (9)
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2.2 Solution by contour integrals

We then find that,

z
dy

dz
= νy + zν+1

Z b

a
eiztŶ (t)itdt

z
d

dz
(z

dy

dz
) + (z2 − ν2)y = (2ν + 1)zν+1

Z b

a
eiztŶ (t)itdt + zν+2

Z b

a
eiztŶ (t)(1 − t2)dt

= −izν+1[eiztŶ (t)(1 − t2)]ba

+izν+1

Z b

a
eizt[(2ν + 1)Ŷ t +

d

dt
(Ŷ (1 − t2))]dt

This shows that to satisfy Bessel’s equation, we must solve,

d

dt
[Ŷ (1 − t2)] + (2ν + 1)tŶ = 0 namely,

(t2 − 1)
dŶ

dt
= (2ν − 1)tŶ

The solution is easy: Ŷ = (t2 − 1)ν− 1
2 . We must also choose the limits so that the

integrated term vanishes. There are many ways of doing this, leading to different integral
representations.
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2.3 Hankel’s formula

As an example, let us consider the case when, Re(z) > 0 and ν + 1/2 is not a positive
integer. We take a contour which runs from t = +i∞ to t = (1 + r)i, r > 0, goes round
the origin counter-clockwise on the circle |t| = 1 + r and returns to i∞. It is clear that
the integrated term vanishes at t = a = b = i∞. We see that this contour contains

within it t = ±1 and plainly, the function, (t2 − 1)ν− 1
2 can be expanded in the binomial

series in 1/t2:

(t2 − 1)ν− 1
2 = Σ∞

m=0

Γ( 1
2
− ν + m)

Γ(m + 1)Γ( 1
2
− ν)

t2ν−1−2m

We may multiply this by eizt and integrate term-by-term and obtain:

zν

Z −1,+1

i∞
eizt(t2 − 1)ν− 1

2 dt = Σ∞
m=0

zνΓ( 1
2
− ν + m)

Γ(m + 1)Γ( 1
2
− ν)

Z −1,+1

i∞
t2ν−1−2meiztdt

Using the properties of the Gamma function, it is easily shown that,

Z −1,+1

i∞
t2ν−1−2meiztdt = −2πi

(−1)m+1e−νπiz2m−2ν

Γ(2m − 2v + 1)

J−ν(z) =
Γ( 1

2
− ν)eνπi( z

2
)ν

2πiΓ( 1
2
)

Z −1,+1

i∞
eizt(t2 − 1)ν− 1

2 dt(10)
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3.1 Wave equation: Sommerfeld integrals

We consider the solutions of the 2-d D’Alembert Wave Equation in cylindrical polar
coordinates, (r, θ):

1

r

∂

∂r
(r

∂u

∂r
) +

1

r2

∂2u

∂θ2
=

1

c2
∂2u

∂t2
(11)

where c is the constant wave speed and u(r, θ, t) is the amplitude of this scalar wave.
We look for solutions of the form, u ≃ Ue−iωt. We then see that u∗ satisfies
Helmholtz’s equation , where k = ω

c
is called the wave number:

∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂U

∂θ2
+ k2U = 0 (12)

Using the Cartesian form , ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 , we can verify that the “plane wave”

U = Aeixkx+iyky ; k2 = k2
x + k2

y , satisfies the equation, where A, kx, ky are any

constants. This becomes in polars, U = Aeikr cos(θ−α), where
kx = k cos α; ky = k sin α. This can be checked by direct substitution in Eq.(12). Setting
ρ = kr, we look for solutions of the form, U = Zn(ρ)einθ . We can get solutions of this

type by superposing several plane waves: U = A
R b

a eiρ cos(θ−α)einαdα. Put,
α = v + θ; a = v0 + θ; v1 = b + θ → U = Aeinθ

R v1

v0
eiρ cos v+invdv. The idea is to

choose v0, v1 and a suitable contour so that the integral becomes only a function of ρ.
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3.2 Sommerfeld-Debye integrals

The Sommerfeld contours are chosen as follows: we first apply a simple shift and express
the integral in terms of λ = v − π/2. The integral becomes, apart from a constant,
w(ρ) =

R

C einλ−iρ sin λdλ for a suitable contour C. We then take Re(ρ) > 0 and
consider the contour C(−π + i∞, π + i∞): this consists of the vertical line in the upper
half-plane, Re(λ) = −π; Im(λ) ≥ 0, the segment of the real axis, −π ≤ λ ≤ π and the
parallel verical line, Re(λ) = π; Im(λ) ≥ 0. Integrating along these lines,

w(ρ) =

Z −π

C:−π+i∞
+

Z π

C:−π
+

Z π+i∞

C:π

= −ie−inπ

Z ∞

0
e−(ρ sinh t+nt)dt +

Z π

−π
e−iρ sin λ+inλdλ

+ieinπ

Z ∞

0
e−(ρ sinh t+nt)dt

Jn(ρ) =
1

2π

Z π

−π
ei(nλ−ρ sin λ)dλ −

sin nπ

π

Z ∞

0
e−(ρ sinh t+nt)dt (13)

where Jn(ρ) =
w(ρ)
2π

is the normalisation needed to conform to standard expressions.
Note that when n is an integer, this reduces to Eq.(7), but now represents, by analytic
continuation, a solution of Bessel’s equation for any n and ρ!
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3.3 Hankel functions: Sommerfeld integrals

Suppose we take C1 to run from −π/2 + i∞ → −π/2 → π/2 → π/2 + i∞ and
integrate eiz cos t+iν(t−π/2); Re(z) > 0. This defines a new linear combination of Bessel
functions called a Hankel function :

H
(1)
ν (z) =

1

π

Z

C1

ei[z cos t+ν(t−π/2)]dt = Jν(z) + iYν(z) (14)

Similarly, when C2 : π/2 − i∞ → π/2 → 3π/2 → 3π/2 + i∞ we get,

H
(2)
ν (z) =

1

π

Z

C2

ei[z cos t+ν(t−π/2)]dt = Jν(z) − iYν(z) (15)

where Yν(z) =
Jν(z) cos νπ−J

−ν(z)

sin νπ
.

Two special cases for 0 < Arg(z) < π where C1 is the imaginary axis and
C2 : −i∞ → 0 → 2π → 2π + i∞ are:

H
(1)
ν (z) = −

i

π
e−iνπ/2

Z ∞

−∞
eiz cosh t−νtdt (16)

H
(2)
ν (z) =

2

π
eiνπ/2[

Z π

0
e−izcost cos(νt) + i

Z ∞

0
eiz cosh t cosh(νt − iνπ)dt](17)

AT – p.10/20



3.4 Asymptotic expansions

The behaviour of Bessel functions for fixed ν and large |z| can be guessed from the
defining Eq.(9). Make the substitution (this is called a Liouville transformation )
y(z) = (z)−1/2Y (z). Then, Y (z) satisfies the equation,

Y ′′ + Y [1 +
1/4 − ν2

z2
] = 0 (18)

For |z| large, the 1
z2 term in the equation is negligible and we see that

Y ≃ A+eiz + A−e−iz → y(z) ≃
A+eiz+A

−
e−iz

z1/2
. The problem is to precisely

determine the constants and find higher order corrections. The method of steepest

descents can be applied and one find the important formulae:

Jν(z) ≃ (
2

πz
)1/2[cos(z −

νπ

2
−

π

4
) −

ν2 − 1
4

2z
sin(z −

νπ

2
−

π

4
) + ..] (19)

H
(1)
ν (z) ≃ (

2

πz
)1/2ei(z− νπ

2
− π

4
)[1 +

i(ν2 − 1
4
)

2z
+ ..] (20)

H
(2)
ν (z) ≃ (

2

πz
)1/2e−i(z− νπ

2
− π

4
)[1 −

i(ν2 − 1
4
)

2z
+ ..] (21)

These are valid for 0 < Arg(z) < π.
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4.1 Laplace’s equation: spherical polars

We have seen that Bessel functions arise naturally when we consider the wave equation
in a cylinder. If we wish to solve Laplace’s equation in spherical coordinates, we write
x = r sin θ cos φ; y = r sin θ sin φ; z = r cos θ, and obtain the form:

∇2Φ =
1

r2
[

∂

∂r
(r2 ∂Φ

∂r
) +

1

sin θ

∂

∂θ
(sin θ

∂Φ

∂θ
) +

1

sin2 θ

∂2Φ

∂φ2
] = 0

Upon separating variables, we encounter Legendre functions which are also related to
functions called spherical harmonics which prove useful in mathematical physics. Thus
setting Φ = F (r)G(θ)H(φ) and substituting in Laplace’s equation we get,

d

dr
(r2 dF

dr
)GH +

FH

sin θ

d

dθ
(sin θ

dG

dθ
) +

FG

sin2 θ

d2H

dφ2
= 0

If we divide this by FGH, the equation can only be satisfied if the first term is a
constant, which we take to be the complex number n(n + 1):

d

dr
(r2 dF

dr
) = n(n + 1)F (22)

1

H

d2H

dφ2
+

sin θ

G

d

dθ
(sin θ

dG

dθ
) + n(n + 1) sin2 θ = 0 (23)
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4.2 Legendre’s associated equation

In Eq.(23) the first term can be separated by equating it to a new separation constant,
−m2. Then we find that, G, H satisfy the equations:

1

sin θ

d

dθ
(sin θ

dG

dθ
) + [n(n + 1) −

m2

sin2 θ
]G = 0 (24)

d2H

dφ2
= −m2H (25)

The equations for F, H are easily solved: thus,

F (r) = Arn + Br−(n+1)

H(φ) = Ceimφ + De−imφ

where, A, B, C, D are arbitrary complex constants. To solve Eq.(24) for G, we put,
µ = cos θ; d

dµ
= − 1

sin θ
d
dθ

and obtain Legendre’s Associated Equation :

(1 − µ2)
d2G

dµ2
− 2µ

dG

dµ
+ [n(n + 1) −

m2

1 − µ2
]G = 0 (26)
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4.3 Legendre’s equation

Consider first the case, m2 = 0. Setting µ ≡ z; G ≡ w(z), Eq.(26) reduces to
Legendre’s equation :

(1 − z2)
d2w

dz2
− 2z

dw

dz
+ n(n + 1)w = 0 (27)

In a problem, you are asked to show that this equation has three regular singularities at
z = +1,−1,∞. From the Frobenius-Fuchs Theorem we know that it will have two linearly
independent analytic solutions in the finite plane. The exponents at z = ±1 are zero.
Hence they are logarithmic branch points . Since z = 0 is an ordinary point of the equation
we can find power (Taylor) series solutions:

w1(z) = 1 −
n(n + 1)

2!
z2 +

n(n − 2)(n + 1)(n + 3)

4!
z4

−
n(n − 2)(n − 4)(n + 1)(n + 3)(n + 5)

6!
z6..

w2(z) = z[1 −
(n − 1)(n + 2)

3!
z2 +

(n − 1)(n − 3)(n + 2)(n + 4)

5!
z4 − ..]
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4.4 Legendre functions

These series can be shown to diverge logarithmically at z = ±1 for general n. Note that
the series for w1(z), an even function of z, terminates whenever n is an even integer ;
similarly the series for w2(z) terminates whenever n is an odd integer. Thus we have
polynomial solutions to the Legendre equation for n taking integer values . Thus we have
the Legendre polynomials which are normalized solutions such that they are equal to unity at
z = 1:

P0(z) = 1

P1(z) = z

P2(z) =
1

2
(3z2 − 1)

P3(z) =
1

2
(5z3 − 3z)...

We can directly obtain these polynomials as follows: clearly, the Newtonian potential,
Φ = 1

r
satisfies Laplace’s equation . In Cartesian coordinates, the potential at x = (x, y, z)

due to a point mass at x0 = (x0, y0, z = z0) is proportional to,
Φ(x, y, z : 0, 0, z0) = 1

[(x−x0)2+(y−y0)2+(z−z0)2]1/2
. This can be written as:

Φ =
1

[r2 − 2rr0 cos θ + r2
0 ]1/2
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4.4 Legendre polynomials: generating function

Now, suppose that r > r0, we then have, using the Binomial expansion:

(1 − x)−p/q = 1 +
p

1!
(
x

q
) +

p(p + q)

2!
(
x

q
)2 +

p(p + q)(p + 2q)

3!
(
x

q
)3 + ..

Φ(r, cos θ; r0) =
1

r
[1 −

r0

r
(2 cos θ −

r0

r
)]−1/2

=
1

r
[1 +

1

2
(
r0

r
)(2 cos θ −

r0

r
) +

1.3

2!22
(
r0

r
)2(2 cos θ −

r0

r
)2..]

=
1

r
[1 + (

r0

r
)(cos θ −

r0

2r
) +

1.3

2!
(
r0

r
)2(cos θ −

r0

2r
)2

+
1.3.5

3!
(
r0

r
)3(cos θ −

r0

2r
)3 + ..]

=
1

r
[1 + (

r0

r
)P1(cos θ) + (

r0

r
)2P2(cos θ) + (

r0

r
)3P3(cos θ)..](28)

Similarly, for r < r0, we may expand in powers of r/r0 and obtain,

Φ(r, cos θ; r0) =
1

r0
Σ∞

n=0(
r

r0
)nPn(cos θ) (29)
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4.5 The Schläfli Integral

Following Schl äfli we consider the function defined by the contour integral taken around a
contour which includes within it t = z:

gn(z) =
1

2πi

I

C

(t2 − 1)n

2n(t − z)n+1
dt (30)

dgn

dz
=

n + 1

2πi

I

C

(t2 − 1)n

2n(t − z)n+2
dt

d2gn

dz2
=

(n + 1)(n + 2)

2πi

I

C

(t2 − 1)n

2n(t − z)n+3
dt

(1 − z2)g′′n − 2zg′n + n(n + 1)gn =
n + 1

2πi

I

C

(t2 − 1)ndt

2n(t − z)n+3

×[(n + 2)(1 − z2) − 2z(t − z) + n(t − z)2]

The terms within the braces may be re-arranged:
(n + 2)(1 − z2) − 2z(t − z) + n(t − z)2 = −(n + 2)(t2 − 1) + 2(n + 1)t(t − z). This
leads to the amazing result that gn(z) satisfies the Legendre equation (this follows from
the fact that the integrand is single-valued for integer n):

(1 − z2)g′′n − 2zg′n + n(n + 1)gn =
n + 1

2πi

I

C

d

dt
[
(t2 − 1)n+1

(t − z)n+2
]dt = 0
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4.6 Proof of the Schläfli representation

Here is a new way to look at our result: we consider, for real |u| > 1 the infinite series,

K(z, u) = Σ∞
n=0

gn(z)

un
(31)

= Σ∞
n=0

1

2πi

I

C

(t2 − 1)n

2nun(t − z)n

dt

t − z

=
1

2πi

I

C
[

1

1 − t2−1
2u(t−z)

]
dt

t − z

=
1

2πi

I

C
[

2u

2u(t − z) − (t2 − 1)
]dt

= −
2u

2πi

I

C

dt

(t − u)2 − (1 − 2uz + u2)

We know how to do the contour integral! We note that the integrand has poles at
t+ = u + (1 − 2uz + u2)1/2; t− = u − (1 − 2uz + u2)1/2.The Residue theorem then
gives (for large u ): the contour C enclosing t = z contributes the residue at t = t−:

K(z, u) =
u

(u2 − 2uz + 1)1/2
(32)
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4.6 Rodrigues’ formula

Consider once again,

K(z, u) =
1

[1 − ( 2z
u

) + ( 1
u
)2]1/2

Put, u = r
r0

; z = cos θ. We then obtain, rΦ(r, cos θ; r0) = K(z, u). It is then

immediately clear that gn(z) = 1
2πi

H

C
(t2−1)n

2n(t−z)n+1 dt ≡ Pn(cos θ).

We can now obtain a remarkable formula for the Legendre polynomials. We see from
Cauchy’s integral theorem using a suitable contour C, the relation:

(z2 − 1)n =
1

2πi

I

C

(t2 − 1)n

t − z
dt

It follows by differentiating under the integral sign,

dn

dzn
[(z2 − 1)n] =

n!

2πi

I

C

(t2 − 1)n

(t − z)n+1
dt

Pn(z) =
1

2nn!

dn

dzn
[(z2 − 1)n] (33)

This important formula due to Rodrigues can also be proved directly from the
(terminating) power series expansion for Pn(z). AT – p.19/20



4.7 Laplace’s integral

In Schl äfli’s formula , we take C : t = z + (z2 − 1)1/2eiφ, namely, a circle with centre
t = z and radius |z2 − 1|1/2. We then have,

Pn(z) =
1

2n+1πi

I

C

(t2 − 1)n

(t − z)n+1
dt

=
1

2n+1πi

Z π

−π

[(z − 1 + (z2 − 1)1/2eiφ)(z + 1 + (z2 − 1)1/2eiφ)n

[(z2 − 1)1/2eiφ]n

×idφ

=
1

2n+1π

Z π

−π

[z2 − 1 + 2z(z2 − 1)1/2eiφ + (z2 − 1)e2iφ]n

[(z2 − 1)1/2eiφ]n
dφ

=
1

2π

Z π

−π
[z + (z2 − 1)1/2 cos φ]ndφ

Pn(z) =
1

π

Z π

0
[z + (z2 − 1)1/2 cos φ]ndφ (34)

This called Laplace’s First Integral for Legendre polynomials.
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