Chennai Mathematical Institute B.Sc Physics

Mathematical methods
 Lecture 15 Complex analysis: applications-4

A Thyagaraja

February, 2009

. 1 Bessel coefficients: generating function

- We next consider a rather different approach to Bessel functions: consider the function of two complex variables z, t defined by:

$$
\begin{equation*}
G(z, t)=e^{\frac{z}{2}\left(t-\frac{1}{t}\right)} \tag{1}
\end{equation*}
$$

The function $G(z, t)$ is clearly a single-valued analytic function of t, for $0<|t|<\infty$, for any z. It has essential singularities at $t=0$ and at infinity. It can therefore be expanded in a Laurent series:

$$
G(z, t)=\Sigma_{n=-\infty}^{\infty} J_{n}(z) t^{n}
$$

The coefficients $J_{n}(z)$ appearing in this expansion are called Bessel coefficients. We shall shortly see that they are in fact Bessel functions of integral order in z. From Laurent's theorem we have,

$$
J_{n}(z)=\frac{1}{2 \pi i} \oint_{C} u^{-(n+1)} e^{\frac{z}{2}\left(u-\frac{1}{u}\right)} d u
$$

where C is any closed curve encircling the origin once counter-clockwise.

1.2 Bessel coefficients: properties

- The power series for the coefficients can be obtained as follows. Setting $u=\frac{2 v}{z}$ The above integral becomes,

$$
J_{n}(z)=\frac{1}{2 \pi i}\left(\frac{z}{2}\right)^{n} \oint_{C} v^{-(n+1)} e^{\left(v-\frac{z^{2}}{4 v}\right)} d v
$$

The contour can be taken as the unit circle. We may expand the uniformly convergent series in powers of z and obtain,

$$
J_{n}(z)=\frac{1}{2 \pi i} \Sigma_{j=0}^{\infty} \frac{(-1)^{j}}{j!}\left(\frac{z}{2}\right)^{n+2 j} \oint_{|v|=1} v^{-(n+1+j)} e^{v} d v
$$

Evidently, if $n+j \geq 0$, the residue at $|v|=0$ is $\frac{1}{(n+j)!}$. When $n+j$ is a negative integer, the residue is zero. Hence, we get the series expansion for $n \geq 0$ (and of course an integer!):

$$
\begin{align*}
J_{n}(z) & =\Sigma_{j=0}^{\infty} \frac{(-1)^{j}}{j!(n+j)!}\left(\frac{z}{2}\right)^{n+2 j} \\
& =\frac{z^{n}}{2^{n} n!}\left[1-\frac{1}{1!(n+1)}\left(\frac{z}{2}\right)^{2}+\frac{1}{2!(n+1)(n+2)}\left(\frac{z}{2}\right)^{4} . .\right] \tag{2}
\end{align*}
$$

Comparison with Eq.(12) of Lecture 14 shows that this Bessel coefficient is indeed identical with the "Bessel function" of integer order n we considered there.

1.3 Bessel functions: contd.

- When $n=-m$, a negative integer, we have similarly,

$$
\begin{align*}
J_{n}(z) & =\Sigma_{j=m}^{\infty} \frac{(-1)^{j}}{j!(j-m)!}\left(\frac{z}{2}\right)^{2 j-m} \\
& =\Sigma_{k=0}^{\infty} \frac{(-1)^{k+m}}{k!(k+m)!}\left(\frac{z}{2}\right)^{2 k+m} \tag{3}
\end{align*}
$$

It follows directly from this that $J_{-n}(z)=(-1)^{n} J_{n}(z)$. We can also derive some useful recurrence relations from the generating function:

$$
\begin{align*}
& J_{n-1}(z)+J_{n+1}(z)=\frac{2 n}{z} J_{n}(z) \tag{4}\\
& J_{n-1}(z)-J_{n+1}(z)=2 \frac{d J_{n}}{d z} \tag{5}
\end{align*}
$$

To prove these, first differentiate the generating formula,

$$
\begin{equation*}
e^{\frac{z}{2}\left(t-\frac{1}{t}\right)}=\Sigma_{n=-\infty}^{n=+\infty} J_{n}(z) t^{n} \tag{6}
\end{equation*}
$$

with respect to t and equate like powers of t. Secondly, differentiate with respect to z and equate coefficients. We can also deduce the relations: $\frac{d}{d z}\left[z^{n} J_{n}(z)\right]=z^{n} J_{n-1}(z)$ $\frac{d}{d z}\left[z^{-n} J_{n}(z)\right]=-z^{-n} J_{n+1}(z)$.

2.1 Integral representations

- We can derive an interesting integral representation for $J_{n}(z)$ from the generating function. Putting $t=e^{i \theta}$ in Eq.(6), we obtain,

$$
\begin{align*}
e^{i z \sin \theta} & =\Sigma_{n=-\infty}^{n=+\infty} J_{n}(z) e^{i n \theta} \\
J_{n}(z) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i z \sin \theta-i n \theta} d \theta \tag{7}
\end{align*}
$$

- We consider (briefly!) a method of solving Bessel's equation by contour integrals which resembles the Laplace transform closely. We wish to write the solution in the form,

$$
\begin{equation*}
y(z)=z^{\nu} \int_{a}^{b} e^{i z t} \hat{Y}(t) d t \tag{8}
\end{equation*}
$$

We have to determine the function $\hat{Y}(t)$ and the limits a, b so that $y(z)$ satisfies:

$$
\begin{equation*}
\frac{d^{2} y}{d z^{2}}+\frac{1}{z} \frac{d y}{d z}+\left(1-\frac{\nu^{2}}{z^{2}}\right) y=0 \tag{9}
\end{equation*}
$$

2.2 Solution by contour integrals

- We then find that,

$$
\begin{aligned}
z \frac{d y}{d z}= & \nu y+z^{\nu+1} \int_{a}^{b} e^{i z t} \hat{Y}(t) i t d t \\
z \frac{d}{d z}\left(z \frac{d y}{d z}\right)+\left(z^{2}-\nu^{2}\right) y= & (2 \nu+1) z^{\nu+1} \int_{a}^{b} e^{i z t} \hat{Y}(t) i t d t+z^{\nu+2} \int_{a}^{b} e^{i z t} \hat{Y}(t)\left(1-t^{2}\right) d t \\
= & -i z^{\nu+1}\left[e^{i z t} \hat{Y}(t)\left(1-t^{2}\right)\right]_{a}^{b} \\
& +i z^{\nu+1} \int_{a}^{b} e^{i z t}\left[(2 \nu+1) \hat{Y} t+\frac{d}{d t}\left(\hat{Y}\left(1-t^{2}\right)\right)\right] d t
\end{aligned}
$$

This shows that to satisfy Bessel's equation, we must solve,

$$
\begin{aligned}
\frac{d}{d t}\left[\hat{Y}\left(1-t^{2}\right)\right]+(2 \nu+1) t \hat{Y} & =0 \text { namely } \\
\left(t^{2}-1\right) \frac{d \hat{Y}}{d t} & =(2 \nu-1) t \hat{Y}
\end{aligned}
$$

The solution is easy: $\hat{Y}=\left(t^{2}-1\right)^{\nu-\frac{1}{2}}$. We must also choose the limits so that the integrated term vanishes. There are many ways of doing this, leading to different integral representations.

2.3 Hankel's formula

- As an example, let us consider the case when, $\operatorname{Re}(z)>0$ and $\nu+1 / 2$ is not a positive integer. We take a contour which runs from $t=+i \infty$ to $t=(1+r) i, r>0$, goes round the origin counter-clockwise on the circle $|t|=1+r$ and returns to $i \infty$. It is clear that the integrated term vanishes at $t=a=b=i \infty$. We see that this contour contains within it $t= \pm 1$ and plainly, the function, $\left(t^{2}-1\right)^{\nu-\frac{1}{2}}$ can be expanded in the binomial series in $1 / t^{2}$:

$$
\left(t^{2}-1\right)^{\nu-\frac{1}{2}}=\sum_{m=0}^{\infty} \frac{\Gamma\left(\frac{1}{2}-\nu+m\right)}{\Gamma(m+1) \Gamma\left(\frac{1}{2}-\nu\right)} t^{2 \nu-1-2 m}
$$

We may multiply this by $e^{i z t}$ and integrate term-by-term and obtain:

$$
z^{\nu} \int_{i \infty}^{-1,+1} e^{i z t}\left(t^{2}-1\right)^{\nu-\frac{1}{2}} d t=\Sigma_{m=0}^{\infty} \frac{z^{\nu} \Gamma\left(\frac{1}{2}-\nu+m\right)}{\Gamma(m+1) \Gamma\left(\frac{1}{2}-\nu\right)} \int_{i \infty}^{-1,+1} t^{2 \nu-1-2 m} e^{i z t} d t
$$

Using the properties of the Gamma function, it is easily shown that,

$$
\begin{aligned}
\int_{i \infty}^{-1,+1} t^{2 \nu-1-2 m} e^{i z t} d t & =-2 \pi i \frac{(-1)^{m+1} e^{-\nu \pi i} z^{2 m-2 \nu}}{\Gamma(2 m-2 v+1)} \\
J_{-\nu}(z) & =\frac{\Gamma\left(\frac{1}{2}-\nu\right) e^{\nu \pi i}\left(\frac{z}{2}\right)^{\nu}}{2 \pi i \Gamma\left(\frac{1}{2}\right)} \int_{i \infty}^{-1,+1} e^{i z t}\left(t^{2}-1\right)^{\nu-\frac{1}{2}} d t(10)
\end{aligned}
$$

3.1 Wave equation: Sommerfeld integrals

- We consider the solutions of the 2-d D'Alembert Wave Equation in cylindrical polar coordinates, (r, θ) :

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} \tag{11}
\end{equation*}
$$

where c is the constant wave speed and $u(r, \theta, t)$ is the amplitude of this scalar wave. We look for solutions of the form, $u \simeq U e^{-i \omega t}$. We then see that u_{*} satisfies Helmholtz's equation, where $k=\frac{\omega}{c}$ is called the wave number:

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial r^{2}}+\frac{1}{r} \frac{\partial U}{\partial r}+\frac{1}{r^{2}} \frac{\partial U}{\partial \theta^{2}}+k^{2} U=0 \tag{12}
\end{equation*}
$$

Using the Cartesian form, $\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$, we can verify that the "plane wave" $U=A e^{i x k_{x}+i y k_{y}} ; k^{2}=k_{x}^{2}+k_{y}^{2}$, satisfies the equation, where A, k_{x}, k_{y} are any constants. This becomes in polars, $U=A e^{i k r \cos (\theta-\alpha)}$, where
$k_{x}=k \cos \alpha ; k_{y}=k \sin \alpha$. This can be checked by direct substitution in Eq.(12). Setting $\rho=k r$, we look for solutions of the form, $U=Z_{n}(\rho) e^{i n \theta}$. We can get solutions of this type by superposing several plane waves: $U=A \int_{a}^{b} e^{i \rho \cos (\theta-\alpha)} e^{i n \alpha} d \alpha$. Put, $\alpha=v+\theta ; a=v_{0}+\theta ; v_{1}=b+\theta \rightarrow U=A e^{i n \theta} \int_{v_{0}}^{v_{1}} e^{i \rho \cos v+i n v} d v$. The idea is to choose v_{0}, v_{1} and a suitable contour so that the integral becomes only a function of ρ.

3.2 Sommerfeld-Debye integrals

- The Sommerfeld contours are chosen as follows: we first apply a simple shift and express the integral in terms of $\lambda=v-\pi / 2$. The integral becomes, apart from a constant, $w(\rho)=\int_{C} e^{i n \lambda-i \rho \sin \lambda} d \lambda$ for a suitable contour C. We then take $\operatorname{Re}(\rho)>0$ and consider the contour $C(-\pi+i \infty, \pi+i \infty)$: this consists of the vertical line in the upper half-plane, $\operatorname{Re}(\lambda)=-\pi ; \operatorname{Im}(\lambda) \geq 0$, the segment of the real axis, $-\pi \leq \lambda \leq \pi$ and the parallel verical line, $\operatorname{Re}(\lambda)=\pi ; \operatorname{Im}(\lambda) \geq 0$. Integrating along these lines,

$$
\begin{align*}
w(\rho)= & \int_{C:-\pi+i \infty}^{-\pi}+\int_{C:-\pi}^{\pi}+\int_{C: \pi}^{\pi+i \infty} \\
= & -i e^{-i n \pi} \int_{0}^{\infty} e^{-(\rho \sinh t+n t)} d t+\int_{-\pi}^{\pi} e^{-i \rho \sin \lambda+i n \lambda} d \lambda \\
& +i e^{i n \pi} \int_{0}^{\infty} e^{-(\rho \sinh t+n t)} d t \\
J_{n}(\rho)= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(n \lambda-\rho \sin \lambda)} d \lambda-\frac{\sin n \pi}{\pi} \int_{0}^{\infty} e^{-(\rho \sinh t+n t)} d t \tag{13}
\end{align*}
$$

where $J_{n}(\rho)=\frac{w(\rho)}{2 \pi}$ is the normalisation needed to conform to standard expressions. Note that when n is an integer, this reduces to Eq.(7), but now represents, by analytic continuation, a solution of Bessel's equation for any n and ρ !

. 3 Hankel functions: Sommerfeld integral

- Suppose we take C_{1} to run from $-\pi / 2+i \infty \rightarrow-\pi / 2 \rightarrow \pi / 2 \rightarrow \pi / 2+i \infty$ and integrate $e^{i z \cos t+i \nu(t-\pi / 2)} ; \operatorname{Re}(z)>0$. This defines a new linear combination of Bessel functions called a Hankel function:

$$
\begin{equation*}
H_{\nu}^{(1)}(z)=\frac{1}{\pi} \int_{C_{1}} e^{i[z \cos t+\nu(t-\pi / 2)]} d t=J_{\nu}(z)+i Y_{\nu}(z) \tag{14}
\end{equation*}
$$

Similarly, when $C_{2}: \pi / 2-i \infty \rightarrow \pi / 2 \rightarrow 3 \pi / 2 \rightarrow 3 \pi / 2+i \infty$ we get,

$$
H_{\nu}^{(2)}(z)=\frac{1}{\pi} \int_{C_{2}} e^{i[z \cos t+\nu(t-\pi / 2)]} d t=J_{\nu}(z)-i Y_{\nu}(z)
$$

where $Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi}$.

- Two special cases for $0<\operatorname{Arg}(z)<\pi$ where C_{1} is the imaginary axis and $C_{2}:-i \infty \rightarrow 0 \rightarrow 2 \pi \rightarrow 2 \pi+i \infty$ are:

$$
\begin{align*}
H_{\nu}^{(1)}(z) & =-\frac{i}{\pi} e^{-i \nu \pi / 2} \int_{-\infty}^{\infty} e^{i z \cosh t-\nu t} d t \tag{16}\\
H_{\nu}^{(2)}(z) & =\frac{2}{\pi} e^{i \nu \pi / 2}\left[\int_{0}^{\pi} e^{-i z \operatorname{cost}} \cos (\nu t)+i \int_{0}^{\infty} e^{i z \cosh t} \cosh (\nu t-i \nu \pi) d t(17)\right. \tag{17}
\end{align*}
$$

3.4 Asymptotic expansions

- The behaviour of Bessel functions for fixed ν and large $|z|$ can be guessed from the defining Eq.(9). Make the substitution (this is called a Liouville transformation) $y(z)=(z)^{-1 / 2} Y(z)$. Then, $Y(z)$ satisfies the equation,

$$
\begin{equation*}
Y^{\prime \prime}+Y\left[1+\frac{1 / 4-\nu^{2}}{z^{2}}\right]=0 \tag{18}
\end{equation*}
$$

For $|z|$ large, the $\frac{1}{z^{2}}$ term in the equation is negligible and we see that $Y \simeq A_{+} e^{i z}+A_{-} e^{-i z} \rightarrow y(z) \simeq \frac{A_{+} e^{i z}+A_{-} e^{-i z}}{z^{1 / 2}}$. The problem is to precisely determine the constants and find higher order corrections. The method of steepest descents can be applied and one find the important formulae:

$$
\begin{align*}
J_{\nu}(z) & \simeq\left(\frac{2}{\pi z}\right)^{1 / 2}\left[\cos \left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)-\frac{\nu^{2}-\frac{1}{4}}{2 z} \sin \left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)+. .\right] \tag{19}\\
H_{\nu}^{(1)}(z) & \simeq\left(\frac{2}{\pi z}\right)^{1 / 2} e^{i\left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)}\left[1+\frac{i\left(\nu^{2}-\frac{1}{4}\right)}{2 z}+. .\right] \tag{20}\\
H_{\nu}^{(2)}(z) & \simeq\left(\frac{2}{\pi z}\right)^{1 / 2} e^{-i\left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)}\left[1-\frac{i\left(\nu^{2}-\frac{1}{4}\right)}{2 z}+. .\right] \tag{21}
\end{align*}
$$

These are valid for $0<\operatorname{Arg}(z)<\pi$.

4.1 Laplace's equation: spherical polars

- We have seen that Bessel functions arise naturally when we consider the wave equation in a cylinder. If we wish to solve Laplace's equation in spherical coordinates, we write $x=r \sin \theta \cos \phi ; y=r \sin \theta \sin \phi ; z=r \cos \theta$, and obtain the form:

$$
\nabla^{2} \Phi=\frac{1}{r^{2}}\left[\frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Phi}{\partial r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Phi}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \Phi}{\partial \phi^{2}}\right]=0
$$

Upon separating variables, we encounter Legendre functions which are also related to functions called spherical harmonics which prove useful in mathematical physics. Thus setting $\Phi=F(r) G(\theta) H(\phi)$ and substituting in Laplace's equation we get,

$$
\frac{d}{d r}\left(r^{2} \frac{d F}{d r}\right) G H+\frac{F H}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d G}{d \theta}\right)+\frac{F G}{\sin ^{2} \theta} \frac{d^{2} H}{d \phi^{2}}=0
$$

If we divide this by $F G H$, the equation can only be satisfied if the first term is a constant, which we take to be the complex number $n(n+1)$:

$$
\begin{gather*}
\frac{d}{d r}\left(r^{2} \frac{d F}{d r}\right)=n(n+1) F \tag{22}\\
\frac{1}{H} \frac{d^{2} H}{d \phi^{2}}+\frac{\sin \theta}{G} \frac{d}{d \theta}\left(\sin \theta \frac{d G}{d \theta}\right)+n(n+1) \sin ^{2} \theta=0 \tag{23}
\end{gather*}
$$

4.2 Legendre's associated equation

- In Eq.(23) the first term can be separated by equating it to a new separation constant, $-m^{2}$. Then we find that, G, H satisfy the equations:

$$
\begin{gather*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d G}{d \theta}\right)+\left[n(n+1)-\frac{m^{2}}{\sin ^{2} \theta}\right] G=0 \tag{24}\\
\frac{d^{2} H}{d \phi^{2}}=-m^{2} H \tag{25}
\end{gather*}
$$

The equations for F, H are easily solved: thus,

$$
\begin{aligned}
F(r) & =A r^{n}+B r^{-(n+1)} \\
H(\phi) & =C e^{i m \phi}+D e^{-i m \phi}
\end{aligned}
$$

where, A, B, C, D are arbitrary complex constants. To solve Eq.(24) for G, we put, $\mu=\cos \theta ; \frac{d}{d \mu}=-\frac{1}{\sin \theta} \frac{d}{d \theta}$ and obtain Legendre's Associated Equation:

$$
\begin{equation*}
\left(1-\mu^{2}\right) \frac{d^{2} G}{d \mu^{2}}-2 \mu \frac{d G}{d \mu}+\left[n(n+1)-\frac{m^{2}}{1-\mu^{2}}\right] G=0 \tag{26}
\end{equation*}
$$

4.3 Legendre's equation

- Consider first the case, $m^{2}=0$. Setting $\mu \equiv z ; G \equiv w(z)$, Eq.(26) reduces to Legendre's equation:

$$
\begin{equation*}
\left(1-z^{2}\right) \frac{d^{2} w}{d z^{2}}-2 z \frac{d w}{d z}+n(n+1) w=0 \tag{27}
\end{equation*}
$$

- In a problem, you are asked to show that this equation has three regular singularities at $z=+1,-1, \infty$. From the Frobenius-Fuchs Theorem we know that it will have two linearly independent analytic solutions in the finite plane. The exponents at $z= \pm 1$ are zero. Hence they are logarithmic branch points. Since $z=0$ is an ordinary point of the equation we can find power (Taylor) series solutions:

$$
\begin{aligned}
w_{1}(z)= & 1-\frac{n(n+1)}{2!} z^{2}+\frac{n(n-2)(n+1)(n+3)}{4!} z^{4} \\
& -\frac{n(n-2)(n-4)(n+1)(n+3)(n+5)}{6!} z^{6} . . \\
w_{2}(z)= & z\left[1-\frac{(n-1)(n+2)}{3!} z^{2}+\frac{(n-1)(n-3)(n+2)(n+4)}{5!} z^{4}-. .\right]
\end{aligned}
$$

4.4 Legendre functions

- These series can be shown to diverge logarithmically at $z= \pm 1$ for general n. Note that the series for $w_{1}(z)$, an even function of z, terminates whenever n is an even integer; similarly the series for $w_{2}(z)$ terminates whenever n is an odd integer. Thus we have polynomial solutions to the Legendre equation for n taking integer values. Thus we have the Legendre polynomials which are normalized solutions such that they are equal to unity at $z=1$:

$$
\begin{aligned}
P_{0}(z) & =1 \\
P_{1}(z) & =z \\
P_{2}(z) & =\frac{1}{2}\left(3 z^{2}-1\right) \\
P_{3}(z) & =\frac{1}{2}\left(5 z^{3}-3 z\right) \ldots
\end{aligned}
$$

We can directly obtain these polynomials as follows: clearly, the Newtonian potential, $\Phi=\frac{1}{r}$ satisfies Laplace's equation. In Cartesian coordinates, the potential at $\mathbf{x}=(x, y, z)$ due to a point mass at $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z=z_{0}\right)$ is proportional to, $\Phi\left(x, y, z: 0,0, z_{0}\right)=\frac{1}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{1 / 2}}$. This can be written as:

$$
\Phi=\frac{1}{\left[r^{2}-2 r r_{0} \cos \theta+r_{0}^{2}\right]^{1 / 2}}
$$

Legendre polynomials: generating functi

O Now, suppose that $r>r_{0}$, we then have, using the Binomial expansion:

$$
\begin{aligned}
(1-x)^{-p / q}= & 1+\frac{p}{1!}\left(\frac{x}{q}\right)+\frac{p(p+q)}{2!}\left(\frac{x}{q}\right)^{2}+\frac{p(p+q)(p+2 q)}{3!}\left(\frac{x}{q}\right)^{3}+. . \\
\Phi\left(r, \cos \theta ; r_{0}\right)= & \frac{1}{r}\left[1-\frac{r_{0}}{r}\left(2 \cos \theta-\frac{r_{0}}{r}\right)\right]^{-1 / 2} \\
= & \frac{1}{r}\left[1+\frac{1}{2}\left(\frac{r_{0}}{r}\right)\left(2 \cos \theta-\frac{r_{0}}{r}\right)+\frac{1.3}{2!2^{2}}\left(\frac{r_{0}}{r}\right)^{2}\left(2 \cos \theta-\frac{r_{0}}{r}\right)^{2} . .\right] \\
= & \frac{1}{r}\left[1+\left(\frac{r_{0}}{r}\right)\left(\cos \theta-\frac{r_{0}}{2 r}\right)+\frac{1.3}{2!}\left(\frac{r_{0}}{r}\right)^{2}\left(\cos \theta-\frac{r_{0}}{2 r}\right)^{2}\right. \\
& \left.+\frac{1.3 .5}{3!}\left(\frac{r_{0}}{r}\right)^{3}\left(\cos \theta-\frac{r_{0}}{2 r}\right)^{3}+. .\right] \\
= & \frac{1}{r}\left[1+\left(\frac{r_{0}}{r}\right) P_{1}(\cos \theta)+\left(\frac{r_{0}}{r}\right)^{2} P_{2}(\cos \theta)+\left(\frac{r_{0}}{r}\right)^{3} P_{3}(\cos \theta) . .\right](28)
\end{aligned}
$$

Similarly, for $r<r_{0}$, we may expand in powers of r / r_{0} and obtain,

$$
\begin{equation*}
\Phi\left(r, \cos \theta ; r_{0}\right)=\frac{1}{r_{0}} \Sigma_{n=0}^{\infty}\left(\frac{r}{r_{0}}\right)^{n} P_{n}(\cos \theta) \tag{29}
\end{equation*}
$$

4.5 The Schläfli Integral

- Following Schläfli we consider the function defined by the contour integral taken around a contour which includes within it $t=z$:

$$
\begin{align*}
g_{n}(z) & =\frac{1}{2 \pi i} \oint_{C} \frac{\left(t^{2}-1\right)^{n}}{2^{n}(t-z)^{n+1}} d t \tag{30}\\
\frac{d g_{n}}{d z}= & \frac{n+1}{2 \pi i} \oint_{C} \frac{\left(t^{2}-1\right)^{n}}{2^{n}(t-z)^{n+2}} d t \\
\frac{d^{2} g_{n}}{d z^{2}}= & \frac{(n+1)(n+2)}{2 \pi i} \oint_{C} \frac{\left(t^{2}-1\right)^{n}}{2^{n}(t-z)^{n+3}} d t \\
\left(1-z^{2}\right) g_{n}^{\prime \prime}-2 z g_{n}^{\prime}+n(n+1) g_{n}= & \frac{n+1}{2 \pi i} \oint_{C} \frac{\left(t^{2}-1\right)^{n} d t}{2^{n}(t-z)^{n+3}} \\
& \times\left[(n+2)\left(1-z^{2}\right)-2 z(t-z)+n(t-z)^{2}\right]
\end{align*}
$$

The terms within the braces may be re-arranged:
$(n+2)\left(1-z^{2}\right)-2 z(t-z)+n(t-z)^{2}=-(n+2)\left(t^{2}-1\right)+2(n+1) t(t-z)$. This leads to the amazing result that $g_{n}(z)$ satisfies the Legendre equation (this follows from the fact that the integrand is single-valued for integer n):

$$
\left(1-z^{2}\right) g_{n}^{\prime \prime}-2 z g_{n}^{\prime}+n(n+1) g_{n}=\frac{n+1}{2 \pi i} \oint_{C} \frac{d}{d t}\left[\frac{\left(t^{2}-1\right)^{n+1}}{(t-z)^{n+2}}\right] d t=0
$$

4.6 Proof of the Schläfli representation

- Here is a new way to look at our result: we consider, for real $|u|>1$ the infinite series,

$$
\begin{align*}
K(z, u) & =\Sigma_{n=0}^{\infty} \frac{g_{n}(z)}{u^{n}} \tag{31}\\
& =\Sigma_{n=0}^{\infty} \frac{1}{2 \pi i} \oint_{C} \frac{\left(t^{2}-1\right)^{n}}{2^{n} u^{n}(t-z)^{n}} \frac{d t}{t-z} \\
& =\frac{1}{2 \pi i} \oint_{C}\left[\frac{1}{1-\frac{t^{2}-1}{2 u(t-z)}}\right] \frac{d t}{t-z} \\
& =\frac{1}{2 \pi i} \oint_{C}\left[\frac{2 u}{2 u(t-z)-\left(t^{2}-1\right)}\right] d t \\
& =-\frac{2 u}{2 \pi i} \oint_{C} \frac{d t}{(t-u)^{2}-\left(1-2 u z+u^{2}\right)}
\end{align*}
$$

We know how to do the contour integral! We note that the integrand has poles at $t_{+}=u+\left(1-2 u z+u^{2}\right)^{1 / 2} ; t_{-}=u-\left(1-2 u z+u^{2}\right)^{1 / 2}$. The Residue theorem then gives (for large u): the contour C enclosing $t=z$ contributes the residue at $t=t_{-}$:

$$
\begin{equation*}
K(z, u)=\frac{u}{\left(u^{2}-2 u z+1\right)^{1 / 2}} \tag{32}
\end{equation*}
$$

4.6 Rodrigues’ formula

- Consider once again,

$$
K(z, u)=\frac{1}{\left[1-\left(\frac{2 z}{u}\right)+\left(\frac{1}{u}\right)^{2}\right]^{1 / 2}}
$$

Put, $u=\frac{r}{r_{0}} ; z=\cos \theta$. We then obtain, $r \Phi\left(r, \cos \theta ; r_{0}\right)=K(z, u)$. It is then immediately clear that $g_{n}(z)=\frac{1}{2 \pi i} \oint_{C} \frac{\left(t^{2}-1\right)^{n}}{2^{n}(t-z)^{n+1}} d t \equiv P_{n}(\cos \theta)$.

- We can now obtain a remarkable formula for the Legendre polynomials. We see from Cauchy's integral theorem using a suitable contour C, the relation:

$$
\left(z^{2}-1\right)^{n}=\frac{1}{2 \pi i} \oint_{C} \frac{\left(t^{2}-1\right)^{n}}{t-z} d t
$$

It follows by differentiating under the integral sign,

$$
\begin{align*}
\frac{d^{n}}{d z^{n}}\left[\left(z^{2}-1\right)^{n}\right] & =\frac{n!}{2 \pi i} \oint_{C} \frac{\left(t^{2}-1\right)^{n}}{(t-z)^{n+1}} d t \\
P_{n}(z) & =\frac{1}{2^{n} n!} \frac{d^{n}}{d z^{n}}\left[\left(z^{2}-1\right)^{n}\right] \tag{33}
\end{align*}
$$

This important formula due to Rodrigues can also be proved directly from the (terminating) power series expansion for $P_{n}(z)$.

4.7 Laplace's integral

- In Schläfli's formula, we take $C: t=z+\left(z^{2}-1\right)^{1 / 2} e^{i \phi}$, namely, a circle with centre $t=z$ and radius $\left|z^{2}-1\right|^{1 / 2}$. We then have,

$$
\begin{align*}
P_{n}(z)= & \frac{1}{2^{n+1} \pi i} \oint_{C} \frac{\left(t^{2}-1\right)^{n}}{(t-z)^{n+1}} d t \\
= & \frac{1}{2^{n+1} \pi i} \int_{-\pi}^{\pi} \frac{\left[\left(z-1+\left(z^{2}-1\right)^{1 / 2} e^{i \phi}\right)\left(z+1+\left(z^{2}-1\right)^{1 / 2} e^{i \phi}\right)^{n}\right.}{\left[\left(z^{2}-1\right)^{1 / 2} e^{i \phi}\right]^{n}} \\
& \times i d \phi \\
= & \frac{1}{2^{n+1} \pi} \int_{-\pi}^{\pi} \frac{\left[z^{2}-1+2 z\left(z^{2}-1\right)^{1 / 2} e^{i \phi}+\left(z^{2}-1\right) e^{2 i \phi}\right]^{n}}{\left[\left(z^{2}-1\right)^{1 / 2} e^{i \phi}\right]^{n}} d \phi \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[z+\left(z^{2}-1\right)^{1 / 2} \cos \phi\right]^{n} d \phi \\
P_{n}(z)= & \frac{1}{\pi} \int_{0}^{\pi}\left[z+\left(z^{2}-1\right)^{1 / 2} \cos \phi\right]^{n} d \phi \tag{34}
\end{align*}
$$

This called Laplace's First Integral for Legendre polynomials.

