Chennai Mathematical Institute B.Sc Physics

Mathematical methods *Lecture 15 Complex analysis: applications-4*

A Thyagaraja

February, 2009

1.1 Bessel coefficients: generating function

We next consider a rather different approach to Bessel functions: consider the function of **two** complex variables z, t defined by:

$$G(z,t) = e^{\frac{z}{2}(t-\frac{1}{t})}$$
 (1)

The function G(z,t) is clearly a single-valued analytic function of t, for $0 < |t| < \infty$, for any z. It has essential singularities at t = 0 and at infinity. It can therefore be expanded in a Laurent series:

$$G(z,t) = \sum_{n=-\infty}^{\infty} J_n(z)t^n$$

The coefficients $J_n(z)$ appearing in this expansion are called **Bessel coefficients**. We shall shortly see that they are in fact Bessel functions of integral order in *z*. From **Laurent's theorem** we have,

$$J_n(z) = \frac{1}{2\pi i} \oint_C u^{-(n+1)} e^{\frac{z}{2}(u - \frac{1}{u})} du$$

where C is any closed curve encircling the origin once counter-clockwise.

1.2 Bessel coefficients: properties

The power series for the coefficients can be obtained as follows. Setting $u = \frac{2v}{z}$ The above integral becomes,

$$J_n(z) = \frac{1}{2\pi i} (\frac{z}{2})^n \oint_C v^{-(n+1)} e^{(v - \frac{z^2}{4v})} dv$$

The contour can be taken as the unit circle. We may expand the uniformly convergent series in powers of z and obtain,

$$J_n(z) = \frac{1}{2\pi i} \sum_{j=0}^{\infty} \frac{(-1)^j}{j!} (\frac{z}{2})^{n+2j} \oint_{|v|=1} v^{-(n+1+j)} e^v dv$$

Evidently, if $n + j \ge 0$, the residue at |v| = 0 is $\frac{1}{(n+j)!}$. When n + j is a negative integer, the residue is zero. Hence, we get the series expansion for $n \ge 0$ (and of course an integer!):

$$J_n(z) = \sum_{j=0}^{\infty} \frac{(-1)^j}{j!(n+j)!} (\frac{z}{2})^{n+2j}$$

= $\frac{z^n}{2^n n!} [1 - \frac{1}{1!(n+1)} (\frac{z}{2})^2 + \frac{1}{2!(n+1)(n+2)} (\frac{z}{2})^4..]$ (2)

Comparison with Eq.(12) of Lecture 14 shows that this **Bessel coefficient** is indeed identical with the "Bessel function" of integer order n we considered there.

1.3 Bessel functions: contd.

When n = -m, a negative integer, we have similarly,

$$J_{n}(z) = \Sigma_{j=m}^{\infty} \frac{(-1)^{j}}{j!(j-m)!} (\frac{z}{2})^{2j-m}$$

= $\Sigma_{k=0}^{\infty} \frac{(-1)^{k+m}}{k!(k+m)!} (\frac{z}{2})^{2k+m}$ (3)

It follows directly from this that $J_{-n}(z) = (-1)^n J_n(z)$. We can also derive some useful recurrence relations from the generating function:

$$J_{n-1}(z) + J_{n+1}(z) = \frac{2n}{z} J_n(z)$$
(4)

$$J_{n-1}(z) - J_{n+1}(z) = 2\frac{dJ_n}{dz}$$
(5)

To prove these, first differentiate the generating formula,

$$e^{\frac{z}{2}(t-\frac{1}{t})} = \sum_{n=-\infty}^{n=+\infty} J_n(z) t^n$$
(6)

with respect to t and equate like powers of t. Secondly, differentiate with respect to z and equate coefficients. We can also deduce the relations: $\frac{d}{dz}[z^n J_n(z)] = z^n J_{n-1}(z)$ $\frac{d}{dz}[z^{-n} J_n(z)] = -z^{-n} J_{n+1}(z).$

2.1 Integral representations

We can derive an interesting integral representation for $J_n(z)$ from the generating function. Putting $t = e^{i\theta}$ in Eq.(6), we obtain,

$$e^{iz\sin\theta} = \sum_{n=-\infty}^{n=+\infty} J_n(z) e^{in\theta}$$
$$J_n(z) = \frac{1}{2\pi} \int_0^{2\pi} e^{iz\sin\theta - in\theta} d\theta$$
(7)

We consider (briefly!) a method of solving Bessel's equation by contour integrals which resembles the Laplace transform closely. We wish to write the solution in the form,

$$y(z) = z^{\nu} \int_{a}^{b} e^{izt} \hat{Y}(t) dt$$
(8)

We have to determine the function $\hat{Y}(t)$ and the limits a, b so that y(z) satisfies:

$$\frac{d^2y}{dz^2} + \frac{1}{z}\frac{dy}{dz} + (1 - \frac{\nu^2}{z^2})y = 0$$
(9)

2.2 Solution by contour integrals

We then find that,

$$\begin{aligned} z\frac{dy}{dz} &= \nu y + z^{\nu+1} \int_{a}^{b} e^{izt} \hat{Y}(t) itdt \\ z\frac{d}{dz}(z\frac{dy}{dz}) + (z^{2} - \nu^{2})y &= (2\nu+1)z^{\nu+1} \int_{a}^{b} e^{izt} \hat{Y}(t) itdt + z^{\nu+2} \int_{a}^{b} e^{izt} \hat{Y}(t)(1-t^{2}) dt \\ &= -iz^{\nu+1} [e^{izt} \hat{Y}(t)(1-t^{2})]_{a}^{b} \\ &+ iz^{\nu+1} \int_{a}^{b} e^{izt} [(2\nu+1)\hat{Y}t + \frac{d}{dt}(\hat{Y}(1-t^{2}))] dt \end{aligned}$$

This shows that to satisfy Bessel's equation, we must solve,

$$\frac{d}{dt}[\hat{Y}(1-t^2)] + (2\nu+1)t\hat{Y} = 0 \text{ namely},$$
$$(t^2-1)\frac{d\hat{Y}}{dt} = (2\nu-1)t\hat{Y}$$

The solution is easy: $\hat{Y} = (t^2 - 1)^{\nu - \frac{1}{2}}$. We must also choose the limits so that the integrated term vanishes. There are many ways of doing this, leading to different integral representations.

2.3 Hankel's formula

As an example, let us consider the case when, $\operatorname{Re}(z) > 0$ and $\nu + 1/2$ is not a positive integer. We take a contour which runs from $t = +i\infty$ to t = (1+r)i, r > 0, goes round the origin counter-clockwise on the circle |t| = 1 + r and returns to $i\infty$. It is clear that the integrated term vanishes at $t = a = b = i\infty$. We see that this contour contains within it $t = \pm 1$ and plainly, the function, $(t^2 - 1)^{\nu - \frac{1}{2}}$ can be expanded in the binomial series in $1/t^2$:

$$(t^{2}-1)^{\nu-\frac{1}{2}} = \Sigma_{m=0}^{\infty} \frac{\Gamma(\frac{1}{2}-\nu+m)}{\Gamma(m+1)\Gamma(\frac{1}{2}-\nu)} t^{2\nu-1-2m}$$

We may multiply this by e^{izt} and integrate term-by-term and obtain:

$$z^{\nu} \int_{i\infty}^{-1,+1} e^{izt} (t^2 - 1)^{\nu - \frac{1}{2}} dt = \sum_{m=0}^{\infty} \frac{z^{\nu} \Gamma(\frac{1}{2} - \nu + m)}{\Gamma(m+1)\Gamma(\frac{1}{2} - \nu)} \int_{i\infty}^{-1,+1} t^{2\nu - 1 - 2m} e^{izt} dt$$

Using the properties of the Gamma function, it is easily shown that,

$$\int_{i\infty}^{-1,+1} t^{2\nu-1-2m} e^{izt} dt = -2\pi i \frac{(-1)^{m+1} e^{-\nu\pi i} z^{2m-2\nu}}{\Gamma(2m-2\nu+1)}$$
$$J_{-\nu}(z) = \frac{\Gamma(\frac{1}{2}-\nu) e^{\nu\pi i}(\frac{z}{2})^{\nu}}{2\pi i \Gamma(\frac{1}{2})} \int_{i\infty}^{-1,+1} e^{izt} (t^2-1)^{\nu-\frac{1}{2}} dt (10)$$

3.1 Wave equation: Sommerfeld integrals

We consider the solutions of the 2-d D'Alembert Wave Equation in cylindrical polar coordinates, (r, θ) :

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = \frac{1}{c^2}\frac{\partial^2 u}{\partial t^2}$$
(11)

where c is the constant wave speed and $u(r, \theta, t)$ is the amplitude of this scalar wave. We look for solutions of the form, $u \simeq Ue^{-i\omega t}$. We then see that u_* satisfies Helmholtz's equation, where $k = \frac{\omega}{c}$ is called the wave number:

$$\frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} + \frac{1}{r^2} \frac{\partial U}{\partial \theta^2} + k^2 U = 0$$
 (12)

Using the Cartesian form, $\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$, we can verify that the "plane wave" $U = Ae^{ixk_x + iyk_y}; k^2 = k_x^2 + k_y^2$, satisfies the equation, where A, k_x, k_y are any constants. This becomes in polars, $U = Ae^{ikr\cos(\theta - \alpha)}$, where $k_x = k\cos\alpha; k_y = k\sin\alpha$. This can be checked by direct substitution in Eq.(12). Setting $\rho = kr$, we look for solutions of the form, $U = Z_n(\rho)e^{in\theta}$. We can get solutions of this type by superposing several plane waves: $U = A \int_a^b e^{i\rho\cos(\theta - \alpha)}e^{in\alpha}d\alpha$. Put, $\alpha = v + \theta; a = v_0 + \theta; v_1 = b + \theta \rightarrow U = Ae^{in\theta} \int_{v_0}^{v_1} e^{i\rho\cos v + inv}dv$. The idea is to choose v_0, v_1 and a suitable contour so that the integral becomes only a function of ρ .

3.2 Sommerfeld-Debye integrals

The Sommerfeld contours are chosen as follows: we first apply a simple shift and express the integral in terms of $\lambda = v - \pi/2$. The integral becomes, apart from a constant, $w(\rho) = \int_C e^{in\lambda - i\rho \sin \lambda} d\lambda$ for a suitable contour *C*. We then take $\operatorname{Re}(\rho) > 0$ and consider the contour $C(-\pi + i\infty, \pi + i\infty)$: this consists of the vertical line in the upper half-plane, $\operatorname{Re}(\lambda) = -\pi$; $\operatorname{Im}(\lambda) \ge 0$, the segment of the real axis, $-\pi \le \lambda \le \pi$ and the parallel verical line, $\operatorname{Re}(\lambda) = \pi$; $\operatorname{Im}(\lambda) \ge 0$. Integrating along these lines,

$$w(\rho) = \int_{C:-\pi+i\infty}^{-\pi} + \int_{C:-\pi}^{\pi} + \int_{C:\pi}^{\pi+i\infty}$$

$$= -ie^{-in\pi} \int_{0}^{\infty} e^{-(\rho \sinh t + nt)} dt + \int_{-\pi}^{\pi} e^{-i\rho \sin \lambda + in\lambda} d\lambda$$

$$+ie^{in\pi} \int_{0}^{\infty} e^{-(\rho \sinh t + nt)} dt$$

$$J_{n}(\rho) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n\lambda - \rho \sin \lambda)} d\lambda - \frac{\sin n\pi}{\pi} \int_{0}^{\infty} e^{-(\rho \sinh t + nt)} dt \qquad (13)$$

where $J_n(\rho) = \frac{w(\rho)}{2\pi}$ is the normalisation needed to conform to standard expressions. Note that when *n* is an integer, this reduces to Eq.(7), but now represents, by analytic continuation, a solution of Bessel's equation for any *n* and ρ !

.3 Hankel functions: Sommerfeld integral

Suppose we take C_1 to run from $-\pi/2 + i\infty \rightarrow -\pi/2 \rightarrow \pi/2 \rightarrow \pi/2 + i\infty$ and integrate $e^{iz \cos t + i\nu(t - \pi/2)}$; $\operatorname{Re}(z) > 0$. This defines a new linear combination of Bessel functions called a Hankel function:

$$H_{\nu}^{(1)}(z) = \frac{1}{\pi} \int_{C_1} e^{i[z\cos t + \nu(t - \pi/2)]} dt = J_{\nu}(z) + iY_{\nu}(z)$$
(14)

Similarly, when $C_2: \pi/2 - i\infty \to \pi/2 \to 3\pi/2 \to 3\pi/2 + i\infty$ we get,

$$H_{\nu}^{(2)}(z) = \frac{1}{\pi} \int_{C_2} e^{i[z\cos t + \nu(t - \pi/2)]} dt = J_{\nu}(z) - iY_{\nu}(z)$$
(15)

where $Y_{\nu}(z) = \frac{J_{\nu}(z) \cos \nu \pi - J_{-\nu}(z)}{\sin \nu \pi}$.

Two special cases for $0 < \operatorname{Arg}(z) < \pi$ where C_1 is the imaginary axis and $C_2 : -i\infty \to 0 \to 2\pi \to 2\pi + i\infty$ are:

$$H_{\nu}^{(1)}(z) = -\frac{i}{\pi} e^{-i\nu\pi/2} \int_{-\infty}^{\infty} e^{iz\cosh t - \nu t} dt$$

$$H_{\nu}^{(2)}(z) = \frac{2}{\pi} e^{i\nu\pi/2} \left[\int_{0}^{\pi} e^{-iz\cos t} \cos(\nu t) + i \int_{0}^{\infty} e^{iz\cosh t} \cosh(\nu t - i\nu\pi) dt \right]$$
(16)

3.4 Asymptotic expansions

The behaviour of Bessel functions for fixed ν and large |z| can be guessed from the defining Eq.(9). Make the substitution (this is called a Liouville transformation) $y(z) = (z)^{-1/2}Y(z)$. Then, Y(z) satisfies the equation,

$$Y'' + Y[1 + \frac{1/4 - \nu^2}{z^2}] = 0$$
(18)

For |z| large, the $\frac{1}{z^2}$ term in the equation is negligible and we see that $Y \simeq A_+ e^{iz} + A_- e^{-iz} \rightarrow y(z) \simeq \frac{A_+ e^{iz} + A_- e^{-iz}}{z^{1/2}}$. The problem is to precisely determine the constants and find higher order corrections. The **method of steepest descents** can be applied and one find the important formulae:

$$J_{\nu}(z) \simeq (\frac{2}{\pi z})^{1/2} \left[\cos(z - \frac{\nu\pi}{2} - \frac{\pi}{4}) - \frac{\nu^2 - \frac{1}{4}}{2z} \sin(z - \frac{\nu\pi}{2} - \frac{\pi}{4}) + ..\right]$$
(19)

$$H_{\nu}^{(1)}(z) \simeq \left(\frac{2}{\pi z}\right)^{1/2} e^{i(z - \frac{\nu \pi}{2} - \frac{\pi}{4})} \left[1 + \frac{i(\nu^2 - \frac{1}{4})}{2z} + ..\right]$$
(20)

$$H_{\nu}^{(2)}(z) \simeq \left(\frac{2}{\pi z}\right)^{1/2} e^{-i(z-\frac{\nu\pi}{2}-\frac{\pi}{4})} \left[1-\frac{i(\nu^2-\frac{1}{4})}{2z}+..\right]$$
(21)

These are valid for $0 < \operatorname{Arg}(z) < \pi$.

4.1 Laplace's equation: spherical polars

We have seen that **Bessel functions** arise naturally when we consider the wave equation in a cylinder. If we wish to solve **Laplace's equation** in spherical coordinates, we write $x = r \sin \theta \cos \phi$; $y = r \sin \theta \sin \phi$; $z = r \cos \theta$, and obtain the form:

$$\nabla^2 \Phi = \frac{1}{r^2} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} \right] = 0$$

Upon separating variables, we encounter Legendre functions which are also related to functions called spherical harmonics which prove useful in mathematical physics. Thus setting $\Phi = F(r)G(\theta)H(\phi)$ and substituting in Laplace's equation we get,

$$\frac{d}{dr}\left(r^{2}\frac{dF}{dr}\right)GH + \frac{FH}{\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{dG}{d\theta}\right) + \frac{FG}{\sin^{2}\theta}\frac{d^{2}H}{d\phi^{2}} = 0$$

If we divide this by FGH, the equation can only be satisfied if the first term is a constant, which we take to be the complex number n(n+1):

$$\frac{d}{dr}\left(r^2\frac{dF}{dr}\right) = n(n+1)F \tag{22}$$

$$\frac{1}{H}\frac{d^2H}{d\phi^2} + \frac{\sin\theta}{G}\frac{d}{d\theta}(\sin\theta\frac{dG}{d\theta}) + n(n+1)\sin^2\theta = 0$$
(23)
AT-p.12/20

4.2 Legendre's associated equation

In Eq.(23) the first term can be separated by equating it to a new separation constant, $-m^2$. Then we find that, G, H satisfy the equations:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} (\sin\theta \frac{dG}{d\theta}) + [n(n+1) - \frac{m^2}{\sin^2\theta}]G = 0$$
(24)

$$\frac{d^2H}{d\phi^2} = -m^2H \tag{25}$$

The equations for F, H are easily solved: thus,

$$F(r) = Ar^{n} + Br^{-(n+1)}$$
$$H(\phi) = Ce^{im\phi} + De^{-im\phi}$$

where, A, B, C, D are arbitrary complex constants. To solve Eq.(24) for G, we put, $\mu = \cos \theta$; $\frac{d}{d\mu} = -\frac{1}{\sin \theta} \frac{d}{d\theta}$ and obtain Legendre's Associated Equation:

$$(1-\mu^2)\frac{d^2G}{d\mu^2} - 2\mu\frac{dG}{d\mu} + [n(n+1) - \frac{m^2}{1-\mu^2}]G = 0$$
 (26)

4.3 Legendre's equation

Consider first the case, $m^2 = 0$. Setting $\mu \equiv z; G \equiv w(z)$, Eq.(26) reduces to Legendre's equation:

$$(1-z^2)\frac{d^2w}{dz^2} - 2z\frac{dw}{dz} + n(n+1)w = 0$$
⁽²⁷⁾

In a problem, you are asked to show that this equation has three regular singularities at $z = +1, -1, \infty$. From the Frobenius-Fuchs Theorem we know that it will have two linearly independent analytic solutions in the finite plane. The exponents at $z = \pm 1$ are zero. Hence they are logarithmic branch points. Since z = 0 is an ordinary point of the equation we can find power (Taylor) series solutions:

$$w_{1}(z) = 1 - \frac{n(n+1)}{2!}z^{2} + \frac{n(n-2)(n+1)(n+3)}{4!}z^{4}$$
$$-\frac{n(n-2)(n-4)(n+1)(n+3)(n+5)}{6!}z^{6}..$$
$$w_{2}(z) = z[1 - \frac{(n-1)(n+2)}{3!}z^{2} + \frac{(n-1)(n-3)(n+2)(n+4)}{5!}z^{4} - ..]$$

4.4 Legendre functions

These series can be shown to diverge logarithmically at $z = \pm 1$ for general n. Note that the series for $w_1(z)$, an even function of z, terminates whenever n is an even integer; similarly the series for $w_2(z)$ terminates whenever n is an odd integer. Thus we have polynomial solutions to the Legendre equation for n taking integer values. Thus we have the Legendre polynomials which are normalized solutions such that they are equal to unity at z = 1:

$$P_{0}(z) = 1$$

$$P_{1}(z) = z$$

$$P_{2}(z) = \frac{1}{2}(3z^{2} - 1)$$

$$P_{3}(z) = \frac{1}{2}(5z^{3} - 3z)...$$

We can directly obtain these polynomials as follows: clearly, the Newtonian potential, $\Phi = \frac{1}{r} \text{ satisfies Laplace's equation. In Cartesian coordinates, the potential at } \mathbf{x} = (x, y, z)$ due to a point mass at $\mathbf{x}_0 = (x_0, y_0, z = z_0)$ is proportional to, $\Phi(x, y, z: 0, 0, z_0) = \frac{1}{[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2]^{1/2}}.$ This can be written as: $\Phi = \frac{1}{[r^2 - 2rr_0 \cos \theta + r_0^2]^{1/2}}$

Legendre polynomials: generating function

Now, suppose that $r > r_0$, we then have, using the **Binomial expansion**:

$$(1-x)^{-p/q} = 1 + \frac{p}{1!}(\frac{x}{q}) + \frac{p(p+q)}{2!}(\frac{x}{q})^2 + \frac{p(p+q)(p+2q)}{3!}(\frac{x}{q})^3 + \dots$$

$$\Phi(r, \cos\theta; r_0) = \frac{1}{r} \left[1 - \frac{r_0}{r} (2\cos\theta - \frac{r_0}{r})\right]^{-1/2}$$

$$= \frac{1}{r} \left[1 + \frac{1}{2} (\frac{r_0}{r})(2\cos\theta - \frac{r_0}{r}) + \frac{1.3}{2!2^2} (\frac{r_0}{r})^2 (2\cos\theta - \frac{r_0}{r})^2 ..\right]$$

$$= \frac{1}{r} \left[1 + (\frac{r_0}{r})(\cos\theta - \frac{r_0}{2r}) + \frac{1.3}{2!} (\frac{r_0}{r})^2 (\cos\theta - \frac{r_0}{2r})^2 + \frac{1.3.5}{3!} (\frac{r_0}{r})^3 (\cos\theta - \frac{r_0}{2r})^3 + ..\right]$$

$$= \frac{1}{r} \left[1 + (\frac{r_0}{r})P_1(\cos\theta) + (\frac{r_0}{r})^2 P_2(\cos\theta) + (\frac{r_0}{r})^3 P_3(\cos\theta) ..\right] (28)$$

Similarly, for $r < r_0$, we may expand in powers of r/r_0 and obtain,

$$\Phi(r,\cos\theta;r_0) = \frac{1}{r_0} \sum_{n=0}^{\infty} (\frac{r}{r_0})^n P_n(\cos\theta)$$
(29)

4.5 The Schläfli Integral

Following Schläfli we consider the function defined by the contour integral taken around a contour which includes within it t = z:

$$g_{n}(z) = \frac{1}{2\pi i} \oint_{C} \frac{(t^{2}-1)^{n}}{2^{n}(t-z)^{n+1}} dt$$
(30)

$$\frac{dg_{n}}{dz} = \frac{n+1}{2\pi i} \oint_{C} \frac{(t^{2}-1)^{n}}{2^{n}(t-z)^{n+2}} dt$$

$$\frac{d^{2}g_{n}}{dz^{2}} = \frac{(n+1)(n+2)}{2\pi i} \oint_{C} \frac{(t^{2}-1)^{n}}{2^{n}(t-z)^{n+3}} dt$$

$$(1-z^{2})g_{n}'' - 2zg_{n}' + n(n+1)g_{n} = \frac{n+1}{2\pi i} \oint_{C} \frac{(t^{2}-1)^{n} dt}{2^{n}(t-z)^{n+3}}$$

$$\times [(n+2)(1-z^{2}) - 2z(t-z) + n(t-z)^{2}]$$

The terms within the braces may be re-arranged:

 $(n+2)(1-z^2) - 2z(t-z) + n(t-z)^2 = -(n+2)(t^2-1) + 2(n+1)t(t-z)$. This leads to the amazing result that $g_n(z)$ satisfies the Legendre equation (this follows from the fact that the integrand is single-valued for integer n):

$$(1-z^2)g_n'' - 2zg_n' + n(n+1)g_n = \frac{n+1}{2\pi i} \oint_C \frac{d}{dt} \left[\frac{(t^2-1)^{n+1}}{(t-z)^{n+2}}\right] dt = 0$$

4.6 Proof of the Schläfli representation

Here is a new way to look at our result: we consider, for real |u| > 1 the infinite series,

$$K(z,u) = \sum_{n=0}^{\infty} \frac{g_n(z)}{u^n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_C \frac{(t^2 - 1)^n}{2^n u^n (t - z)^n} \frac{dt}{t - z}$$

$$= \frac{1}{2\pi i} \oint_C [\frac{1}{1 - \frac{t^2 - 1}{2u(t - z)}}] \frac{dt}{t - z}$$

$$= \frac{1}{2\pi i} \oint_C [\frac{2u}{2u(t - z) - (t^2 - 1)}] dt$$

$$= -\frac{2u}{2\pi i} \oint_C \frac{dt}{(t - u)^2 - (1 - 2uz + u^2)}$$
(31)

We know how to do the contour integral! We note that the integrand has poles at $t_+ = u + (1 - 2uz + u^2)^{1/2}$; $t_- = u - (1 - 2uz + u^2)^{1/2}$. The **Residue theorem** then gives (for large u): the contour C enclosing t = z contributes the residue at $t = t_-$:

$$K(z,u) = \frac{u}{(u^2 - 2uz + 1)^{1/2}}$$
(32)

4.6 Rodrigues' formula

Consider once again,

$$K(z,u) = \frac{1}{[1 - (\frac{2z}{u}) + (\frac{1}{u})^2]^{1/2}}$$

Put, $u = \frac{r}{r_0}$; $z = \cos \theta$. We then obtain, $r\Phi(r, \cos \theta; r_0) = K(z, u)$. It is then immediately clear that $g_n(z) = \frac{1}{2\pi i} \oint_C \frac{(t^2 - 1)^n}{2^n (t - z)^{n+1}} dt \equiv P_n(\cos \theta)$.

We can now obtain a remarkable formula for the Legendre polynomials. We see from Cauchy's integral theorem using a suitable contour C, the relation:

$$(z^{2}-1)^{n} = \frac{1}{2\pi i} \oint_{C} \frac{(t^{2}-1)^{n}}{t-z} dt$$

It follows by differentiating under the integral sign,

$$\frac{d^{n}}{dz^{n}}[(z^{2}-1)^{n}] = \frac{n!}{2\pi i} \oint_{C} \frac{(t^{2}-1)^{n}}{(t-z)^{n+1}} dt$$

$$P_{n}(z) = \frac{1}{2^{n}n!} \frac{d^{n}}{dz^{n}}[(z^{2}-1)^{n}]$$
(33)

This important formula due to **Rodrigues** can also be proved directly from the (terminating) power series expansion for $P_n(z)$.

AT – p.19/20

4.7 Laplace's integral

In Schläfli's formula, we take $C: t = z + (z^2 - 1)^{1/2} e^{i\phi}$, namely, a circle with centre t = z and radius $|z^2 - 1|^{1/2}$. We then have,

$$P_{n}(z) = \frac{1}{2^{n+1}\pi i} \oint_{C} \frac{(t^{2}-1)^{n}}{(t-z)^{n+1}} dt$$

$$= \frac{1}{2^{n+1}\pi i} \int_{-\pi}^{\pi} \frac{[(z-1+(z^{2}-1)^{1/2}e^{i\phi})(z+1+(z^{2}-1)^{1/2}e^{i\phi})^{n}}{[(z^{2}-1)^{1/2}e^{i\phi}]^{n}}$$

$$\times id\phi$$

$$= \frac{1}{2^{n+1}\pi} \int_{-\pi}^{\pi} \frac{[z^{2}-1+2z(z^{2}-1)^{1/2}e^{i\phi}+(z^{2}-1)e^{2i\phi}]^{n}}{[(z^{2}-1)^{1/2}e^{i\phi}]^{n}} d\phi$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} [z+(z^{2}-1)^{1/2}\cos\phi]^{n} d\phi$$

$$P_{n}(z) = \frac{1}{\pi} \int_{0}^{\pi} [z+(z^{2}-1)^{1/2}\cos\phi]^{n} d\phi$$
(34)

This called Laplace's First Integral for Legendre polynomials.