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|.1 Bessel coefficients: generating functi

» \We next consider a rather different approach to Bessel functions: consider the function
of two complex variables z, t defined by:

G(z,t) = e5(t=7) (1)

The function G(z,t) is clearly a single-valued analytic function of ¢, for 0 < [t| < oo,
for any z. It has essential singularities at ¢ = 0 and at infinity. It can therefore be
expanded in a Laurent series:

G(z,t) = X°° In (2)t"

n=—oo

The coefficients J,,(z) appearing in this expansion are called Bessel coefficients . We
shall shortly see that they are in fact Bessel functions of integral order in z. From
Laurent’s theorem we have,

1 2
Jn(Z) — % CU_(n—i_l)eE(U_%)du

where C' is any closed curve encircling the origin once counter-clockwise.
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1.2 Bessel coefficients: properties

® The power series for the coefficients can be obtained as follows. Setting v = 27“ The
above integral becomes,

2:2
W) = e Gn g e ia,

The contour can be taken as the unit circle. We may expand the uniformly convergent
series in powers of z and obtain,
1 (—1)j

Jn(z) = ——X720-— (E)”+2j7{ v (NI v gy
271 ! 2 v]=

Evidently, if n + 7 > 0, theresidue at |v| =0 1s ICED] + 31 When n + j is a negative
integer, the residue is zero. Hence, we get the series expansion for n > 0 (and of
course an integer!):

p _ oo (_1)j n+23
Inle) = Vgl n 4+ 52 )
B 2™ ] 1 Z .9 1 A
= ot 1!(n+1)(§) i 2!(n+1)(n+2)(§) -] @

Comparison with Eq.(12) of Lecture 14 shows that this Bessel coefficient is indeed
identical with the “Bessel function” of integer order n we considered there. AT - p3/20



1.3 Bessel functions: contd.

» When n = —m, a negative integer, we have similarly,
—1)J :
J gl (j —m)! 2
—1)ktm
— 3 ( ) (_)2k+m 3)

=0 kl(k + m)! 2

It follows directly from this that J_,,(z) = (—1)"J,(z). We can also derive some useful
recurrence relations from the generating function:

2
In1(2) + Jog1(z) = —Ja(?) @

dJn
oo
dz

To prove these, first differentiate the generating formula,

Jn—l(z) - Jn+1(z) — 5)

e3(t—1)  — SPET0 T ()t (6)

nN=—oo

with respectto ¢t and equate like powers of ¢. Secondly, differentiate with respectto z
and equate coefficients. We can also deduce the relations: -L[2".J,,(2)] = 2" J,_1(2)

dz
L ()] = —2 g (2).
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2.1 Integral representations

® e can derive an interesting integral representation for J,,(z) from the generating
function. Putting ¢t = e’ in Eq.(6), we obtain,

eiz sinf  _ Egii—gg Jn(z)eme
J (Z) _ i o eiz sin 0 —1n0 do @)
" N 27 0

® We consider (briefly!) a method of solving Bessel’'s equation by contour integrals which
resembles the Laplace transform closely. We wish to write the solution in the form,

b . A
y(z) = z”/ e"*'Y (t)dt (8)
We have to determine the function Y (¢) and the limits a,b so that y(z) satisfies:

L+ ra-Sw = o ©
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2.2 Solution by contour integrals

® \We then find that,

d b .
zd—y = vy+ z”“/ e"*'Y (t)itdt
4 a
d _dy 2 2 v+1 TN V42 v ity 2
zz(za) +z*=v)y = Qv+1)z e'”*'Y (t)itdt + z e”'Y (t)(1 — t*)dt

= P Y ()(1 - )]
b A d -
—I—iz”+1/ e [(2v + DY+ - (V(1 = 7))t

This shows that to satisfy Bessel's equation, we must solve,

d - ~
SV =)+ (v + 1)ty = 0 namely,
dy -
( ) — (2v —1)

The solution is easy: Y = (2 — 1)”_%. We must also choose the limits so that the
integrated term vanishes. There are many ways of doing this, leading to different integral
representations.
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2.3 Hankel's formula

» As an example, let us consider the case when, Re(z) > 0 and v 4 1/2 is not a positive

integer. We take a contour which runs from ¢t = +icotot = (1 4 r)i, r > 0, goes round
the origin counter-clockwise on the circle |t| =1+ r and returnsto ico. Itis clear that
the integrated term vanishes att = a = b = ico. We see that this contour contains
within it ¢ = £1 and plainly, the function, (¢t* — 1)”_% can be expanded in the binomial
seriesin 1/t?:

1
(t2 o 1)1/—% — 3™ F(§ — v+ m) t21/—1—2m

"= (m 4+ 1) —v)

We may multiply this by e?** and integrate term-by-term and obtain:

eizt(tQ o l)v—gdt _ OO:O t2y—1—2m€iztdt
- =T (m + I)F(% — V) Jico

—1,+1 v (1l _ —1,+1
z”/ + 1 2'T(5 —v+m) +
1

Using the properties of the Gamma function, it is easily shown that,

/—1,—|—1 t21/—1—2meiztdt N o (_1>m—|—16—u7m'22m—21/
oo '(2m —2v+1)
(2 —v)er™ (2 r—L+1
J_V(Z) _ (2 ) . (2) / ezzt(tQ o 1)v—%dt(10)
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3.1 Wave equation: Sommerfeld integral

» We consider the solutions of the 2-d D’Alembert Wave Equation  in cylindrical polar
coordinates, (r,0):

__(r,a_)_|___ —

(11)

where c is the constant wave speed and w(r, @, t) is the amplitude of this scalar wave.
We look for solutions of the form, « ~ Ue~%*t. We then see that w. satisfies
Helmholtz's equation , where k = % Is called the wave number:

6)2U+1a—U+ia—U+lc2U = 0 (12)
Or2 r Or r2 062 a

Using the Cartesian form , V? = 85’;2 - 58;2 , we can verify that the “plane wave”
U = Ae'wFatiwhy, 2 = k2 4 k2, satisfies the equation, where A, k., k, are any
constants. This becomes in polars, U = Aek7cos(0—) \where

kx = kcos a; ky = ksin . This can be checked by direct substitution in Eq.(12). Setting
p = kr, we look for solutions of the form, U = Z,,(p)e'™?. We can get solutions of this
type by superposing several plane waves: U = A f; etpcos(f—a)gina gy pyt,
a=v+0;a=vo+0;v1 =b+0 — U= Ae'"? fvvol etP cosvtinv gy, The idea is to

choose wvg,v; and a suitable contour so that the integral becomes only a function of  p.
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3.2 Sommerfeld-Debye integrals

The Sommerfeld contours are chosen as follows: we first apply a simple shift and express
the integral in terms of A = v — w /2. The integral becomes, apart from a constant,
w(p) = [ emAPsinAd) for a suitable contour C. We then take Re(p) > 0 and
consider the contour C'(—7 + i0co, ™ + i00): this consists of the vertical line in the upper
half-plane, Re(\) = —m; Im(A) > 0, the segment of the real axis, —7 < A < 7 and the
parallel verical line, Re(\) = m;Im(\) > 0. Integrating along these lines,

—Tr ™ T+100
w(p) = / +/ +
C:—m+ic0 C:—m C:m

00 s
_ _ie—znﬂ/ e—(p51nht+nt)dt+/ e~ tpsin )x—f—zn)\d)\
0

—TT
_i_z-ez'nﬂ' /OO 6—(p sinh t—i—nt)dt
0

1 [T . ' 00 .
In(p) = oo Ao Nay - = / e~ (pmhiEn gy (qg)
T J 7 A 0

where J,,(p) = % is the normalisation needed to conform to standard expressions.
Note that when n is an integer, this reduces to Eq.(7), but now represents, by analytic

continuation, a solution of Bessel’s equation for any n and p!

AT - p.9/20



.3 Hankel functions: Sommerfeld integra

» Suppose we take C; to run from —7/2 4 ico — —7/2 — w/2 — /2 4 ico and
integrate etz costtiv(t—7/2). Re(z) > 0. This defines a new linear combination of Bessel
functions called a Hankel function :

) = - / elFeosttvt=n/Dldt = J, (2) + io (2) (14)
C1

7
Similarly, when Cs : 7/2 — ico — 7 /2 — 37 /2 — 37 /2 + ico we get,

HzEQ) (Z) _ l / ez’[z cos t—|—y(t—7r/2)]dt _ J,/(Z) o ZYU(Z) (15)
Co

7

Ju(z)cosvm—J_,(2)
sin v ’

where Y, (z) =

® Two special cases for 0 < Arg(z) < w where C is the imaginary axis and
Cy: —ico — 0 — 2w — 27 + 100 are:
(1) 2 —ivm /2 - 1z cosh t—vt
H)y(z) = ——e e dt (16)
— o0

70

H,SQ) (z) = —e“”T/Q[/ e "#o5t cos(vt) + z/ gtz cosht cosh(vt — ivm)dt|17)
T 0 0
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3.4 Asymptotic expansions

® The behaviour of Bessel functions for fixed » and large |z| can be guessed from the
defining Eq.(9). Make the substitution (this is called a Liouville transformation )
y(2) = (2)~1/2Y(2). Then, Y (z) satisfies the equation,

1/4 — v?

Y'"+Y[1+ 5
z

] = 0 (18)
For |z| large, the -1 term in the equation is negligible and we see that
z

Y o~ Apel® £ A_e % s y(z) ~ AEC ;j‘;e_ . The problem is to precisely

determine the constants and find higher order corrections. The method of steepest
descents can be applied and one find the important formulae:

v (X Ppos(z MT Ty Y T g, T T
Ju(z) =~ (71'2) [cos(z 5 4) . sin(z 5 4) +..] @9
2 i(s_ VT _ T i(VQ_l)
H,Sl)(z) ~ (E)1/2e( D) 4)[1+T4+"] (20)
2 —i(s_vm _ T i(Vz_l)
HP(2) =~ (;)1/26 (== — ] 21)

These are valid for 0 < Arg(z) < .
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4.1 Laplace’s equation: spherical polars

» \We have seen that Bessel functions  arise naturally when we consider the wave equation
in a cylinder. If we wish to solve Laplace’s equation in spherical coordinates, we write
x = rsinfcos ¢;y = rsinfsin ¢; z = r cos #, and obtain the form:
1.0 ,00 1 9 OP 1 0%®

7“2[87°(T 8T)+sin989(sm 89)+sin29 8¢2]

Upon separating variables, we encounter Legendre functions which are also related to
functions called spherical harmonics  which prove useful in mathematical physics. Thus
setting ® = F'(r)G(0)H (¢) and substituting in Laplace’s equation we get,

d  odF FH d dG FG d?H

22l 2 (sing —~ 0
dr(r d'r) +sin8 dQ(Sln d9)+sin29 do?

If we divide this by FFGH, the equation can only be satisfied if the first term is a
constant, which we take to be the complex number n(n + 1):

d dF
5(7“25 = nn+1F (22)

1 d?2H  sinf d dG
=+ 2 D (sin6= ) +n(n+ 1)sin? = 0 (23)
H d¢ G do do AT - p.12/20




4.2 Legendre’s associated equation

» In Eq.(23) the first term can be separated by equating it to a new separation constant,
—m?. Then we find that, G, H satisfy the equations:

1 d dG m?
— (sin 0 — 1) — G = 0 24
s g M0 gg) Tt D) = 2oe] &9
d?H 5
The equations for F, H are easily solved: thus,
F(r) = Ar™ + Br—(nt1)
H(¢) = Ce'™? 4 De 'm¢

where, A, B,C, D are arbitrary complex constants. To solve Eq.(24) for GG, we put,

1 = cos 0; % — —ﬁ d% and obtain Legendre’s Associated Equation
d?>G dG m?
(1—p?)— —2u— +[n(n+1) — |G = 0 (26)

dp? du 1 — p?
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4.3 Legendre’s equation

® Consider first the case, m? = 0. Setting p = 2; G = w(z), Eq.(26) reduces to
Legendre’s equation

o\ d?w dw
(1—z)——2zd——|—n(n—l—1)w = 0 (27)

® In a problem, you are asked to show that this equation has three regular singularities ~ at
z = +1, —1, co. From the Frobenius-Fuchs Theorem we know that it will have two linearly
independent analytic solutions in the finite plane. The exponents at z = 1 are zero.
Hence they are logarithmic branch points . Since z = 0 is an ordinary point 0f the equation
we can find power (Taylor) series solutions:

n(n+1) 2 nn—2)(n+1)(n+ 3) A

wi(z) = — o1 41
_nn—2)(n—4)(n+1)(n+3)(n+5) ¢
6!
o) = Z[l_(n_1;(!n_|_2)22+(n—1)(n—3)5(!n—|—2)(n+4)z4_“]

AT - p.14/20



4.4 Legendre functions

® These series can be shown to diverge logarithmically at z = =1 for general n. Note that
the series for wq(z), an even function of z, terminates whenever n is an even integer ;
similarly the series for ws(z) terminates whenever n is an odd integer. Thus we have
polynomial solutions  to the Legendre equation for n taking integer values . Thus we have
the Legendre polynomials which are normalized solutions such that they are equal to unity at

z = 1:
Po(z) = 1
Pi(z) = =z
Pa(z) = %(322 —1)
P3(z) = %(523 — 32)...

We can directly obtain these polynomials as follows: clearly, the Newtonian potential,
b = % satisfies Laplace’s equation . In Cartesian coordinates, the potential at x = (x,y, 2)
due to a point mass at xo = (xo,y0,z = z0) IS proportional to,

: _ 1 : : _
d(z,y,2:0,0,20) = TSNS WP CITVEE This can be written as:

1

b =
[r2 — 2rrg cos 6 + r2]1/2
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L Legendre polynomials: generating funct

» Now, suppose that » > rg, we then have, using the Binomial expansion:

- p.xz,, pp+q) zo pp+q(p+29) =
(1—z)" P/ = 1+ﬁ(5)+ o (5)24‘ 31 (E)3+
1
®(r,cosb;rg) = —[1—T—0(2COSH—T—O)]_1/2
r r T
1 1 1.3
— —[1—|——(T—O)(20059—T—O)—F—(T—O)Q(QCOS@—T_O)Q--]
T 2° 7 T 2122 r T
1 1.3
= S () (cos0— 22 + o (F2)2(cosf — 22?2
r r 2r 21 ' r 2r
) (7) (0080—5) + ..]
1
= ;[1 -+ (%)Pl (cos ) + (%))QPQ(COS 0) + (%)3P3(cos 0)..](28)

Similarly, for » < rg, we may expand in powers of r/ry and obtain,

1
®(r,cosb;rg) = —Z%OZO(L)”Pn(COSG) (29)
o o
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4.5 The Schiafli Integral

® Following schiafli we consider the function defined by the contour integral taken around a
contour which includes within it ¢t = z:
1 (t?2 — 1)

. — dt 30
gn(2) 27 o 2 (t — 2)n il 50)

dgn, n+1 y{ 2 — 1™
— = , dt
dz 27 27 (t — z)”+2
d? gn B (n + 1)(n—|—2) —1)" 5t
dz2 2n t— z)n+3
n+1 (t? — 1)"dt
1—2%)g” —2 g, =

x[(n+2)(1 — 2%) — 2z(t — 2) + n(t — 2)?]

The terms within the braces may be re-arranged:
(n+2)(1—22) —22(t—2)+n(t—2)%2=—(n+2)t? — 1)+ 2(n + 1)t(t — 2). This
leads to the amazing result that g¢,,(z) satisfies the Legendre equation (this follows from
the fact that the integrand is single-valued for integer n):
n+1

d (t2 —1)nt!
1 — 2\ /1 2 / 1 o _ 7{ it

Jdt =0
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4.6 Proof of the Schlafli representation

® Here is a new way to look at our result: we consider, for real lu| > 1 the infinite series,

K(z,u) = E;;O:Og”(z) (31)

un

_ OO_OL?{ t? — 1) dt

274 2nun(t —2)" t — z
I Y S S
T om t2—1 _
27 Jo 1 — S (t—2) t
1 2
- — ¢ - |t
2mi Jo 2u(t — z) — (t2 — 1)
2u dt

2mi Jo (t—u)? — (1 — 2uz + u?)

We know how to do the contour integral! We note that the integrand has poles at

ty =u+ (1 —2uz+u?)/2;t_ =u— (1 —2uz+ u?)'/2.The Residue theorem then

gives (for large w ): the contour C enclosing ¢ = z contributes the residue at ¢t = t_:
u

K(z,u) = (@ —2us £ D12 (32)
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4.6 Rodrigues’ formula

® Consider once again,

1
1- &)+ @77

u

K(z,u) =

Put, u = %; z = cos . We then obtain, r®(r,cos;r9) = K(z,u). Itisthen

2 n
immediately clear that g, (z) = 5= §, Qn(ft__zl))nﬂ

dt = Py (cos?).

» \We can now obtain a remarkable formula for the Legendre polynomials. We see from
Cauchy’s integral theorem  using a suitable contour C', the relation:

1 t2 — 1"
o = L@y
2w Jo t—z

It follows by differentiating under the integral sign,

ar . 5 n! (t2 —1)»
— - D" = — dt
dz"m (= )" 2mwi Jo (t — z)ntl
1 d"
Pa(z) = 22— 1)
O e

This important formula due to Rodrigues can also be proved directly from the
(terminating) power series expansion for P, (z). AT - p.19/120



4.7 Laplace’s integral

B In schiaflis formula , we take C' : ¢t = z + (22 — 1)1/2¢7?, namely, a circle with centre
t = z and radius |22 — 1|*/2. We then have,

1 (2 — 1™
Py, — dt
(Z) on+1r4 %C (t _ Z)n—l—l
B 1 /71' [(2_1_|_(Z2_1)1/2€i¢)(z_|_1_|_(22_1)1/2€z‘¢)n
 on+lgy . (22 — 1)1/267;‘/5]”
Xidg
_ 1 /7r (22 — 14+ 22(2% — 1)1/2€i¢ + (22 — 1)62¢¢]nd¢
- ontlg - [(22 _ 1)1/2673¢]”
= LTt 2 - ) 2cos g as
2 J _,
Puz) = o[ R cosolde 4
0

This called Laplace’s First Integral  for Legendre polynomials.
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