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1.1 Second-order linear differential equations

Consider the following equation (named after Airy ) with variable coeffcients :

d2y

dz2
− zy(z) = 0 (1)

We will seek a solution y(z) in the form of a power series. Equations of this type are
linear and homogeneous . Thus we set,

y(z) = a0 + a1z + a2z
2 + ..

We simply substitute the series in the equation and equate like powers:

2.1a2 = 0

3.2a3 − a0 = 0

4.3a4 − a1 = 0

5.4a5 − a2 = 0

.... ..

m(m− 1)am − am−3 = 0

We see that a2 = 0; a5 = 0; a8 = 0... Suppose we choose a0 = 1; a1 = 0. It follows
that a4 = a7 = a10 = .. = 0 too.
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1.2 Series solutions

However, the recurrence relations give,

a3 =
1

3.2

a6 =
a3

6.5
=

1

6.5.3.2

a9 =
a6

9.8
=

1

9.8.6.5.3.2

a3n =
a3n−3

3n(3n− 1)

Thus the solution (denoted by y1(z) ) is obtained as a power series :

y1(z) = 1 +
z3

2.3
+

z6

2.3.5.6
+

z9

2.3.5.6.8.9
..

= 1 +
(z3)

2.3
+

(z3)2

2.3.5.6
+

(z3)3

2.3.5.6.8.9
+

It is easily shown by the Ratio Test that this series is absolutely convergent for all z and
thus represents an entire function . It is called the Airy function . It satisfies the equation and
the conditions, y(0) = 1; y′(0) = 0.
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1.3 Airy functions

But this is not all! We could have chosen a0 = 0; a1 = 1. Then the recursion relations
imply that, a3 = a6 = .. = a3n = 0. However, we would have had recurrence relations
like,

a4 =
1

4.3

a7 =
a4

7.6
=

1

7.6.4.3

Leading to the power series:

y2(z) = z +
z4

3.4
+

z7

3.4.6.7
..

y2(z), we see that y2(0) = 0; y′2(0) = 1. It is again proved by the ratio test that y2(z)

is also an entire function and satisfies Airy’s equation. It is plain that if a, b are arbitrary

constants , ay2(z) + by2(z) is also a solution of the Airy equation.

It is clear that y1(z) and y2(z) defined by the above power series cannot be constant,

non-zero multiples of each other. Suppose, for example, y1(z) = ky2(z). This equation
would fail to apply at z = 0 where the RHS vanishes but the LHS would not. They are a
fundamental set of solutions, and all solutions can be expressed as a linear combination of
these two.
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2.1 General theory of Frobenius and Fuchs

Definition 14.1: A linear, homogeneous, second-order differential equation in the complex
domain takes the following standard form:

d2f

dz2
+ p(z)

df

dz
+ q(z)f = 0 (2)

where p(z), q(z) are holomorphic (ie, single-valued, analytic) functions except for
certain singular points. Any point z where they are both analytic is said to be an ordinary

point of the differential equation. Any point which is a singular point of these coefficient
functions is called a singularity of the equation. At such points, p(z), q(z) can have poles

or isolated essential singularities . I now present the principal results of the Frobenius-Fuchs

theory without rigorous proofs.

Theorem 14.1: If z = 0 is an ordinary point of the differential equation Eq.(2), a convergent
power series solution, single-valued and analytic in z can be found taking on any given
initial values, y(0); y′(0). The series converges in a disk which must have at least one
singularity of the equation on it. The solution represented by the power series is unique .
If p(z), q(z) are entire functions, so is the solution.

The power series solutions and the proof of the above theorem can be obtained by the
following method of integral equations/iterative approximations due to Picard .
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2.2 Picard’s method

We recast the second-order Eq.(2) as an equivalent firt-order system: thus we put,
w(z) = y′(z) and consider the system:

dy

dz
= w(z) (3)

dw

dz
= −p(z)w(z) − q(z)y(z) (4)

The initial data are: y(0) = y0;w(0) = y′0. If y(z), w(z) are any pair of analytic
functions in the disk D : |z| < R, where the nearest singularity of p(z), q(z) is at a
radius R, the RHS would be analytic functions. We may therefore formally integrate the
equations (along any path lying entirely in D, thanks to Cauchy’s theorem! ) and apply the
boundary conditions to obtain the linear, inhomogeneous integral equations:

y(z) = y0 +

Z z

0
w(u)du (5)

w(z) = y′0 −

Z z

0
[p(u)w(u) + q(u)y(u)]du (6)

Picard’s method of successive iterations starts with the crudest approximation to y(z), w(z),
namely y(0)(z) = y0;w(0)(z) = w0 = y′0. Substituting on the RHS of Eqs.(5,6), we

get the next approximants:
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2.3 Picard’s method: higher approximations

y(1)(z) = y0 +

Z z

0
w(0)(u)du

w(1)(z) = w0 −

Z z

0
[p(u)w(0)(u) + q(u)y(0)(u)]du

Furthermore, we see that in general we will have the equations:

y(n+1)(z) = y0 +

Z z

0
w(n)(u)du

w(n+1)(z) = w0 −

Z z

0
[p(u)w(n)(u) + q(u)y(n)(u)]du

Observe that that the zeroth approximations (ie the initial data) are analytic and this
implies by induction that every pair y(n)(z);w(n)(z) are also analytic and take on the
correct initial conditions. If we can take the limit n→ ∞ on both sides of the above
equations and the limits exist, we will have proved the required existence theorem!

We obviously have, [y(n+1)(z) − y(n)(z)] =
R z
0 [w(n)(u) − w(n−1)(u)]du and

[w(n+1)(z) − w(n)(z)] =

−
R z
0 [p(u)(w(n)(u) − w(n−1)(u)) + q(u)(y(n)(u) − y(n−1)(u))]du.
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2.4 Picard estimates

Let z = |z|eiθ;u = teiθ :

|y(n+1)(|z|eiθ) − y(n)(|z|eiθ)| ≤

Z |z|

0
|w(n)(teiθ) − w(n−1)(teiθ)|dt

|w(n+1)(|z|eiθ) − w(n)(|z|eiθ)| ≤

Z |z|

0
[|p(teiθ)(w(n) − w(n−1)) + q(teiθ)(y(n) − y(n−1))|]dt

We set
φn+1(|z|) = |y(n+1)(|z|eiθ)−y(n)(|z|eiθ)|;ψn+1(|z|) = |w(n+1)(|z|eiθ)−w(n)(|z|eiθ)|.
Then,

φn+1(|z|) ≤

Z |z|

0
ψn(t)dt <

Z |z|

0
(φn(t) + ψn(t))dt

ψn+1(|z|) ≤ M

Z |z|

0
[ψn(t) + φn(t)]dt

(φn+1(|z|) + ψn+1(|z|)) ≤ (M + 1)

Z |z|

0
(φn(t) + ψn(t))dt

where |p(z)| < M ; |q(z)| < M .
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2.4 Picard’s method: convergence

We “solve” these inequalities “recursively”: |ψ1| ≤M(|y0|+ |y′0|)|z|; |φ1| ≤M |y′0||z| →

φ1(t) + ψ1(t) < M(2|y′0| + |y0|)t

φ2(t) + ψ2(t) <
(Mt)2

2!
(2|y′0| + |y0|)

..

φn(t) + ψn(t) <
(Mt)n

n!
(2|y′0| + |y0|)

This proves that Limn→∞(ψn(|z|) + φn(|z|)) = 0. We see that this implies the uniform
convergence and hence the analyticity of the infinite sums,

Limn→∞y(n+1)(z) = y0 + Σ∞
k=0[y(k+1)(z) − y(k)(z)]

Limn→∞w(n+1)(z) = w0 + Σ∞
k=0[w(k+1)(z) − w(k)(z)]

Clearly, not only do the solutions exist, but the same technique shows that uniqueness
is assured. It is clearly seen that the solutions constructed this way depend linearly on
the initial data. Thus choosing y0 = 1; y′0 = 0 we can generate a solution pair,
(yI(z), wI(z)). Choosing y0 = 0; y′0 = 1 gives a second pair, yII(z), wII(z)). The
functions, yI(z), yII(z) form a fundamental set of solutions to Eq.(2), in effect proving
Theorem 14.1.
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2.5 Regular singular points

Definition 14.2: A point z = a is a regular singular point/regular singularity if the functions,
(z − a)p(z), (z − a)2q(z) are analytic at the point but at least one of p(z), q(z) has a pole
there. If, at z = a either p or q has a singularity which is not regular, the equation is said
to have an irregular singular point there.

The following equation arises in potential theory in cylindrical polars:

d2f

dr2
+

1

r

df

dr
= 0

This equation has no singularity in the finite r -plane except at r = 0. Evidently, the
singularity there is a regular one. Note it has two solutions, fI(r) = 1; fII(r) = ln r.
Note also that the second of these is not a holomorphic function while the first is actually
an entire function. This shows that at a regular singularity of the equation not all of the
solutions need have singularities. On the other hand, a solution may not be single-valued
in the region surrounding the singular point.
Bessel’s equation arises in mathematical physics in many contexts and has a regular
singularity at z = 0:

d2y

dz2
+

1

z

dy

dz
+ (1 −

ν2

z2
)y = 0 (7)

where ν is a parameter called order . It often is, but need not necessarily be, an integer.AT – p.10/20



2.6 Linear independence of solutions

We know from previous examples that second-order, homogeneous linear ode’s have an
infinity of solutions which can be expressed as a linear combination (with constant
coefficients) of two “fundamental solutions”. The following discussion clarifies the issues
and general concepts involved. They will be needed in our analysis of solutions near
regular singularities of such equations.

Definition 14.3: If y1(z), y2(z) are any two solutions of a second-order linear differential
equation in a common domain, D, they are said to be linearly dependent if two non-zero
constants a, b exist such that the equation,

ay1(z) + by2(z) = 0

is satisfied at every point in D. If no such constants can be found, the solutions are said to
be linearly independent in D.

Examples: 1. The equation, d2y
dz2

= y has solutions, y1 = ez ; y2 = e−z , valid for all finite
z. It is easy to show that they are linearly independent.

2. The Airy equation (Eq.(1)) has two entire function solutions y0(z); y1(z). It follows from
the different intial conditions they satisfy at the origin that they are linearly independent.
3. It must be very carefully noted that linear independence does not mean that the
solutions are functionally independent ! In Example 1 above, we see that e−z = 1

ez
. Thus,

each solution can be expressed as a function (in this case reciprocal) of the other.
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2.7 The Wronskian

The following theorem gives necessary and sufficient conditions for any two solutions of
Eq.(2) to be linearly independent.

Theorem 14.2: If y1(z); y2(z) are any two solutions of Eq.(2) defined in a common domain
D of analyticity, they are linearly independent if and only if their Wronskian defined by,
W (z) = y1(z)y′2(z) − y′1(z)y2(z) does not vanish in D.

Proof: Suppose non-zero a, b exist such that ay1(z) + by2(z) = 0. Since this equation
holds throughout D, we may differentiate and obtain, ay′1(z) + by′2(z) = 0 as a
consequence, at each point z ∈ D. But this implies that the determinant of the
homogeneous linear algebraic equations for the constants a, b must vanish! This
determinant is none other than the Wronskian , W (z). Hence, if y1(z), y2(z) are linearly
dependent in D, then, W (z) = 0.
Next, suppose W (z) 6= 0 in D. Then, the homogeneous linear equations,

ay1(z) + by2(z) = 0

ay′1(z) + by′2(z) = 0

have only the trivial solution , a = b = 0 at any point in D. Hence, the solutions must
be linearly independent.
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2.8 Equation for the Wronskian

I will derive a remarkable equation satisfied by any two solutions of Eq.(2). Let
y1(z), y2(z) be any two solutions in D. We know that,

y′′1 + p(z)y′1 + q(z)y1 = 0

y′′2 + p(z)y′2 + q(z)y2 = 0

Multiply the second equation by y1(z) and the first by y2(z) and subtract the latter
from the former to obtain:

[y1y
′′
2 − y2y

′′
1 ] + p[y1y

′
2 − y2y

′
1] = 0 hence,

dW

dz
+ p(z)W (z) = 0 (8)

This linear, first order, homogeneous equation can be immediately integrated! Thus let us
suppose that at some point z0, we know y1(z), y2(z). We may immediately calculate
W (z0) there. Equation (8) can be integrated to give,

W (z) = W (z0)e
−

R

z

z0
p(u)du

(9)

The integral may be taken along any path in D where p(z) is assumed to be analytic.
This implies that if W (z0) vanishes, it vanishes everywhere in D. If it doesn’t vanish at
any one point, it can vanish nowhere. AT – p.13/20



3.1 The Bessel equation

I want to consider the Bessel equation as a case study for the Frobenius-Fuchs series

expansion of the solution at a regular singularity. We assume a power series with a new twist
and write,

y(z) = a0z
c + a1z

c+1 + a2z
c+2 + .. (10)

where c is a complex constant to be determined. We substitute in Bessel’s Eq.(7) and
follow the usual procedure of equating the coefficients of the various powers of z to
zero. We then obtain the following set of recurrence relations:

a0[c2 − ν2] = 0 (zc−2)

a1[(c+ 1)2 − ν2] = 0 (zc−1)

a2[(c+ 2)2 − ν2] + a0 = 0 (zc)

an[(c+ n)2 − ν2] + an−2 = 0 (zc+n−2)

We can satisfy the first equation choosing a0 = 1 without loss of generality if we set,

c2 = ν2 (11)

This is called the indicial equation at the regular singularity. We can solve it easily:
c = ±ν.
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3.1 Bessel functions

If the square roots of ν2 have unequal real parts, we shall denote by +ν the root with
the larger real part, the other being −ν. We will assume that the difference of the two

roots , 2ν is not an integer . This implies that (c+ n)2 − ν2 cannot vanish for any n > 0.
The second equation now requires, a1 = 0 and subsequently a2n+1 = 0;n = 1, 2, ...
We can now solve for the coefficients, a2, a4, .. successively as none of the
denominators can vanish.

a2 = −
1

4ν + 4
=

(−1)

(ν + 1).22

a4 =
1

(8ν + 16)(4ν + 4)
=

(−1)2

2!(ν + 1)(ν + 2).24

a6 = −
1

(12ν + 36)(8ν + 4)(4ν + 4)
=

(−1)3

3!(ν + 1)(ν + 2)(ν + 3).26

The power series becomes:

y(z; ν) = zν [1 −
1

1!(ν + 1)
(
z

2
)2 +

1

2!(ν + 1)(ν + 2)
(
z

2
)4 − ..]
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3.2 Bessel functions: standard series solutions

In the preceding work, we could have taken a0 to be an arbitrary non-zero constant. It
is conventional to take a0 = 1

2νΓ(ν+1)
. We then obtain the series solution for the Bessel

function of order ν:

Jν(z) = (
z

2
)νΣ∞

n=0

(−1)n

n!Γ(ν + n+ 1)
(
z

2
)2n (12)

We make some important observations:

a) The solution, y(z; ν) makes sense for any +ν since the denominators in the
recurrence relations following the indicial equation cannot vanish.
b) If ν happens to be an integer Jν(z) is single-valued, otherwise zν has a branch point

at the regular singularity, z = 0 of Bessel’s equation, Eq.(7). In the latter case, it can be
written as zνΦν(z2/4), where Φν(z2/4) is an even, entire function , since the series for
Φν(z2/4) is absolutely and uniformly convergent for any finite z, as can be shown by

the Weierstrass M-test and the series for e−z2/4.
c) If 2ν is not an integer, the series makes sense with the choice −ν. Hence J−ν(z)

is also a valid solution. It is linearly independent of Jν(z), since the latter tends to zero at
the origin whereas J−ν(z) “blows up” like z−ν .
d) Thus, when 2ν is not an integer, J±ν(z) form a fundamental set and any solution can
be expressed as a linear combination of these two. AT – p.16/20



3.3 Bessel functions of integer order

We next consider what happens when +ν ≥ 0 is an integer. Consider ν = 0 first. We
proceed as before and obtain,

J0(z) = Σ∞
n=0

(−1)n

(n!)2
(
z

2
)2n (13)

To find the second, linearly independent solution, we use the following trick: write,
y(z) = J0(z)w(z), where w(z) must be determined. Substituting in the Bessel equation
of zeroth order,

(J0w)′′ +
1

z
(J0w)′ + J0w = [J ′′

0 +
1

z
J ′
0 + J0]w + w′′J0 + (2J ′

0 +
J0

z
)w′

= 0

The first term on the RHS vanishes. The second and third give the following linear,

first-order, homogeneous o.d.e for w′(z):

dw′

dz
= −(

2J ′
0

J0
+

1

z
)w′

w′ = e−(2 ln J0+ln z) hence

w(z) =

Z z

z0

du

u(J0(u))2
(14)
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3.4 Bessel functions: contd.

Let us calculate the Wronskian of Jν(z), J−ν(z) when ν is s not an integer. Note that
as z → 0,

Jν(z) ≃
zν

2νΓ(ν + 1)

J−ν(z) ≃
z−ν

2−νΓ(−ν + 1)

W (Jν , J−ν) = −
2ν

z

1

Γ(ν + 1)Γ(−ν + 1)
= −

2 sinπν

πz

Using the property of the Gamma function . This shows that Jν , J−ν form a fundamental
set of solutions when ν is not an integer. Note also that from Eq.(12), the series,
considered as a function of the order , ν is an entire function for any fixed z 6= 0. Thus it
can be differentiated with respect to ν and will satisfy the equation,

d2

dz2
(
∂Jν

∂ν
) +

1

z

d

dz
(
∂Jν

∂ν
) + (1 − ν2)

∂Jν

∂ν
=

2ν

z2
Jν (15)

Plainly, by changing ν → −ν, we see that,

d2

dz2
(
∂J−ν

∂ν
) +

1

z

d

dz
(
∂J−ν

∂ν
) + (1 − ν2)

∂J−ν

∂ν
=

2ν

z2
J−ν (16)
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3.5 The second solution for integer ν

Although the “trick” used earlier for integer ν works and shows that the second solution
has a logarithmic branch point at z = 0, there is a different method used by Hankel . We
note that if ν = n is an integer, J−n(z) = (−1)nJn(z). This can be proved using
Eq.(12) and the fact that 1

Γ(p)
= 0 for p = 0,−1,−2,−3, ... Now, define , for non-integer

values of ν

Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ
(17)

Using previous results, we see that, W (Jν , Yν) = 2
πz

. Hence Jν , Yν form a
fundamental set. If ν → n, an integer, it is seen that the numerator and denominator
vanish. We can apply L’Hospital’s rule and write,

Yn(z) = Limν→nYν(z)

=
1

π
[
∂Jν

∂ν
− (−1)n ∂J−ν

∂ν
]ν=n (18)

It is easily shown from Equations (15,16) that Yn(z) is indeed a solution of Eq.(7) for
integer n.It also follows by continuity that W (Jn, Yn) = 2

πz
.
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3.6 Summary: Frobenius-Fuchs Theorem

Theorem 14.2: The second-order linear o.d.e Eq.(2) is said to have a regular singularity at
z = z0, if p(z) has at most a simple pole and/or q(z) a double pole. Then, 1: The
equation has two linearly independent solutions in a “punctured disk” around z0 of the
forms, y1(z) = (z− z0)c1 [1 + Σ∞

n=1an(z− z0)n],y2 = (z− z0)c2 [1 + Σ∞
n=1bn(z− z0)n]

where c1, c2; Re(c1) ≥ Re(c2) are the roots of the indicial equation at z = z0, obtained by
substituting the series into the equation, provided the exponents c1,2 do not differ by a
positive integer or zero. 2. If s = c1 − c2 is a positive integer or zero, the second solution
must take the form,

y2(z) = λy1(z) ln(z − z0) + (z − z0)c2 [1 + Σ∞
n=1bn(z − z0)n] (19)

where λ is determined by p, q. Both series converge uniformly to analytic (but not
generally single-valued) functions in disk aroundz0 extending to the nearest singularity of
the equation to z0.
To understand the behaviour at ∞ we put z = 1/u; (− du

u2
= dz). Then we get,

u2 d

du
[u2 dy

du
] − u3 dy

du
+ (1 − ν2u2)y = 0

y′′ +
1

u
y′ + [

1

u4
−
ν2

u2
]y = 0

Infinity (ie, u = 0 ) is therefore an irregular singularity of the Bessel equation. AT – p.20/20
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