
Chennai Mathematical Institute
B.Sc Physics

Mathematical methods
Lecture 12: Complex analysis: applications-I

A Thyagaraja

February, 2009

AT – p.1/19



1.1 The Riemann Zeta function

Let s be a complex variable with Re(s) > 1. The comparison test shows that the infinite
series,

ζ(s) = Σ∞
n=1

1

ns
(1)

converges absolutely. Since each of its terms, e−s ln n is an entire function of s, the
series defines a holomorphic function in the s−plane to the right of s = 1.

The Riemann Zeta function has many remarkable properties and still poses major
puzzles to mathematicians! It is intimately connected with prime numbers as the following
infinite product representation due to Euler shows:

1

ζ(s)
= (1 −

1

2s
)(1 −

1

3s
)(1 −

1

5s
)..(1 −

1

P s
n

)..

= Π∞
n=1(1 −

1

P s
n

) (2)

where Pn is the nth prime number : P1 = 2, P2 = 3, P3 = 5, ..
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1.2 Zeta function: properties

Proof of Euler’s product: If Re(s) > 1, the infinite series , Σ∞
n=1

1
P s

n
is absolutely

convergent, being a “sub-series” of ζ(s) itself! Hence the infinite product is absolutely
convergent. Every factor is non-vanishing. Note that,

ζ(s)(1 −
1

2s
) = 1 +

1

3s
+

1

5s
+ ..

where the RHS has no terms involving multiples of 1/2s. Similarly,
ζ(s)(1 − 1

2s )(1 − 1
3s ) has no multiples of 1/3s, etc. Since the product is convergent,

ζ(s)Π∞
n=1(1 − 1

P s
n

) = 1. Here we use the fundamental theorem of Euclid: every integer is

expressible uniquely, apart from order, as a product of powe rs of prime numbers .

Einstein’s radiation integral: Consider the integral (Re(s) > 1):

E(s) =

Z ∞

0

xs−1

ex − 1
dx (=

Z ∞

0

xse−x

1 − e−x

dx

x
)

=

Z ∞

0
xs−1(Σ∞

n=1e−nx)dx = Σ∞
n=1

Γ(s)

ns

= ζ(s)Γ(s) (3)

where we set nx = u and invert the order of summation and integration and use the
definitions of Gamma and Zeta functions.
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1.3 Hankel’s integrals

Consider the contour integral,

H(z; R) =

Z

CR

e−t(−t)z−1dt (4)

Here −t is positive on the negative real axis and −π ≤ Arg(−t) ≤ π. The contour CR

runs from R > 0 on the positive real axis and approaches the origin from the right in the
upper half-plane, winds once around the origin anti-clockwise and then returns to R in
the lower half-plane.

The integrand is analytic except at the origin and along the cut taken from 0 to ∞ along
the positive real axis. We may write it as, e−t+(z−1) ln(−t), choosing the principal
branch, as indicated. We may deform the contour to go along the “upper lip” of the real
line to |t| = ρ < R and then describe this circle anti-clockwise once and then return to
R along the lower real axis.

Along upper lip, integrand is: e−t+(z−1) ln |t|−iπ(z−1)

Along lower lip, it is: e−t+(z−1) ln |t|+iπ(z−1)

On the circle, −t = ρeiφ
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1.4 Hankel’s formula for the Gamma function

H(z; R) =

Z ρ

R
e−t+(z−1) ln |t|−iπ(z−1)dt +

Z π

−π
(ρeiφ)z−1eρeiφ

ρeiφidφ

+

Z R

ρ
e−t+(z−1) ln |t|+iπ(z−1)dt

= −2i sin πz

Z R

ρ
e−ttz−1dt + iρz

Z π

−π
eizφ+ρ(eiφ)dφ

Taking Re(z) > 0, and the limits, R → ∞, ρ → 0, we see that, the ρ -integral vanishes
and the other two combine to give the Gamma integral:

Γ(z) = −
1

2i sin πz

Z

C
e−t(−t)z−1dt (5)

Here, C is a contour starting from +∞ and running along in the upper half-plane,
circling the origin counter-clockwise once and running back to infinity in the lower half
plane. It follows that (from Lec 11, Eq.(5) and z → 1 − z ):

1

Γ(z)
=

i

2π

Z

C
e−t(−t)−zdt (6)
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1.5 Analytic continuation of the Zeta function

Riemann followed the Hankel procedure for the Gamma function to derive a formula for the
Zeta function which will be valid everywhere in the complex plane, apart from a simple
pole at s = 1. Thus, consider:

R =

Z

C

(−t)s−1

et − 1
dt (7)

Where C is Hankel’s contour, starting at +∞, running in the upper half t-plane,
circling the origin once anti clockwise and returning to infinity parallel to the real axis in
the lower half plane, avoiding the poles of the denominator. As before, for Re(s) > 1,

e(s−1) ln(−t) = e(s−1) ln |t|−iπ(s−1); Im(t) = ǫ > 0;Arg(−t) = −iπ

e(s−1) ln(−t) = e(s−1) ln |t|+iπ(s−1); Im(t) = ǫ < 0;

R = −e−iπs

Z ρ

+∞

ts−1

et − 1
dt − eiπs

Z +∞

ρ

ts−1

et − 1
dt + iρs

Z π

−π

eisφdφ

eρeiφ − 1

= −2i sin πs

Z ∞

0

ts−1

et − 1
dt thus, taking ρ → 0

ζ(s) = −
Γ(1 − s)

2πi

Z

C

(−t)s−1

et − 1
dt =

Γ(1 − s)

2πi

Z

C

(−t)s

et − 1

dt

t
(8)
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1.6 Some deductions

Gamma function: Although Eqs.(5,6) were derived for Re(z) > 0, the contour integrals in
them actually converge for all z and in Eq.(6), the RHS is an entire function. Thus we
conclude that 1

Γ(z)
is an entire function. This also shows that Γ(z) cannot have any

zeros. From the infinite product formulae (Lec. 11, Eqs.(11, 12))) we know that Γ(z)

must have simple poles at z = 0,−1,−2, ...

Zeta function: The contour integral in Eq.(8) is valid for all s. Hence, the formula
represents the Zeta function everywhere. It is clear that at s = 1, 2, .., Γ(1 − s) has
poles. It follows from Cauchy’s theorem that for s = 2, 3, .. the contour integral
vanishes. Hence, the Zeta function has no singularities there , as also shown by the
Einstein integral Eq.(3). Putting s = 1 in the integral in Eq.(8), from the Residue theorem ,

1

2πi

Z

C

(−t)

et − 1

dt

t
= −1

Lims→1
ζ(s)

Γ(1 − s)
= −1

Since Γ(1 − s) has a simple pole at s = 1 with residue −1, ζ(s) must have also have
simple pole there with residue 1. This shows that (s − 1)ζ(s) is an entire function .

The Euler product , Eq.(2) shows that for Re(s) > 1, ζ(s) does not have any zeros.
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1.7 Riemann’s functional equation

We apply the Residue theorem to the single-valued function
(−t)s−1

et−1
; Re(s) < 0 in the slit

region RN , where N is a large integer. RN is bounded by the circle,
KN : |t| = (2N + 1)π and the “Hankel” contour CN from t = (2N + 1)π, circling the
origin as usual. We suppose that RN contains all the poles, t = ±2nπi; n = 1, 2.., N ,
where the residues are: rn of the integrand in its interior . Then,

1

2πi

I

KN

(−t)s−1

et − 1
dt +

1

2πi

I

CN

(−t)s−1

et − 1
dt = ΣN

n=1(rn + r−n)

Note:(−t)s−1 = e(s−1) ln |t|+i(s−1)Arg(−t) and, Arg(−t) = −π/2 at t = 2nπi; n > 0.
Hence,

rn + r−n = (2nπ)s−12 sin(πs/2)

Taking the limit N → ∞, we see that the integral over KN vanishes (show this!) and
we obtain Riemann’s functional equation for ζ(s),

ζ(s)

Γ(1 − s)
=

2s sin( sπ
2

)

π1−s
ζ(1 − s) (9)
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1.8 Legendre’s “duplication formula”

We next obtain an important functional equation for the Gamma function:

22z−1Γ(z)Γ(z +
1

2
) = π1/2Γ(2z) (10)

Proof: We use the Euler product formula for the Gamma function :

Limn→∞
n!nz

z(z + 1)..(z + n)
= Γ(z) then,

Γ(z)Γ(z +
1

2
) = Limn→∞

(n!)2n2z+1/2

[z(z + 1)..(z + n)][(z + 1/2)(z + 3/2)..(z + n + 1/2)]

= Limn→∞
n2zn1/2(n!)222n+2

2z(2z + 1)(2z + 2)..(2z + 2n + 1)

= 2−2zΓ(2z)Limn→∞
n1/2(n!)222n+2

(2n + 1)!

The last term is independent of z and hence constant. Putting z = 1/2 and using
Γ(1/2) = π1/2; Γ(1) = 1; Γ(2) = 1, we obtain Legendre’s formula.
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1.9 Riemann’s “reflection formula”

If we make use of the Legendre duplication formula for the Gamma function and Riemann’s
functional equation for the Zeta function , we obtain a symmetrical form of the latter called
the “reflection formula”:

ζ(s)

Γ(1 − s)
=

2s sin( sπ
2

)

π1−s
ζ(1 − s)

ζ(s)Γ(s) cos(
sπ

2
) = 2s−1πsζ(1 − s) (11)

But, π1/2Γ(s) = 2s−1Γ( s
2
)Γ( s+1

2
); Γ( 1+s

2
)Γ( 1−s

2
) = π

cos( πs
2

)
.

Substitution gives Riemann’s beautiful Reflection formula:

π−s/2Γ(
s

2
)ζ(s) = π−( 1−s

2
)Γ(

1 − s

2
)ζ(1 − s) (12)

Although Eq.(9) was derived for Re(s) < 0, by analytic continuation principles it is valid
everywhere except at s = 1. For Re(s) > 1, ζ(s)Γ(s) has no zeros. Hence the only
zeros of ζ(1 − s) for Re(1 − s) < 0 are at s = 3, 5, ...

Riemann conjectured that all the other zeros of the Zeta function are on the “half-line”,
Re(s) = 1

2
. Although it is known that there are an infinity of zeros on it, the Riemann

Hypothesis is still unproved!.
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2.1 Transform methods

Complex analysis provides a very powerful tool for solving many problems in physics and
engineering using “transform methods”. We take a brief look at these techniques to give
you a feel for what is involved.

Definition 12.1: Laplace transform: Suppose f(t) is a complex function of the real variable

t ∈ [0,∞), such that for a complex s, the integral,

f̂(s) =

Z ∞

0
e−stf(t)dt (13)

is defined. Then f̂(s) is called the Laplace transform of f(t). We term the function, f(t) the inverse

transform of f̂(s). (Nb. Some texts use the variable p instead of s!)

Ex. 1: Find the Laplace transform of eλt, where λ is any complex number.

f̂(s) =

Z ∞

0
e−steλtdt

=
1

s − λ

The integral converges for all Re(s) > Re(λ). Sometimes we may write the result as,
L(eλt) = 1

s−λ
.Taking λ = 0, we see that L(1) = 1

s
. Clearly, L−1( 1

s−λ
) = eλt.
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2.2 Laplace transform theory

Theorem 12.1: Let f(t), g(t) be arbitrary functions defined on [0,∞) having Laplace
transforms, L(f), L(g). Then, if a, b, c are any constants, and f ′(t) is the derivative of f

then:

L(af) + L(bg) = L(af + bg) (14)

L(tc) =

Z ∞

0
e−sttcdt

=
Γ(c + 1)

sc+1
(15)

L(
df

dt
) =

Z ∞

0
e−stf ′(t)dt

= −f(0) + sf̂(s) (16)

L(
d2f

dt2
) =

Z ∞

0
e−st d2f

dt2
dt

= −f ′(0) − sf(0) + s2f̂(s) (17)

The first equation says that the Laplace transfor is a linear transformation . The second is
based on the Gamma function and demonstrates that large t behaviour of f(t) is related
to small s behaviour of f̂(s). The third and fourth equations say that differentiation w.r.t t

is related to multiplication by s and involves “initial values”. AT – p.12/19



2.3 More about Laplace transforms

The differentiation operator on f(t) (in the "t"-domain) transforms into a multiplication of
f̂(s) (in the "s"-domain) by s. It is this property which makes Laplace transforms useful
in many problems. The following theorem concerns the analyticity of f̂(s) .

Theorem 12.2: Suppose f(t) is a function such that
R ∞
0 e−σtf(t)dt exists. Then,

R ∞
0 e−stf(t)dt exists as an analytic function of s for all Re(s) > Re(σ).

Proof: Consider I(T ) =
R T
0 e−stf(t)dt =

R T
0 e−(s−σ)te−σtf(t)dt. Then,

I(T ) = (s − σ)

Z T

0
e−(s−σ)tφ(t)dt + e−(s−σ)T φ(T )

where,
R T
0 e−σtf(t)dt = φ(T ). and upon integrating by parts. Now, since the integral

for φ converges as T → ∞, |φ(t)| is bounded and the integral on the RHS absolutely is
convergent for Re(s) > Re(σ). For the same reason, the second term goes to zero.
The absolute and uniform convergence in this right half-plane guarantees analyticity in s.
Thus, Laplace transforms have a typical abscissa of convergence . Although the integral is
defined for certain s, the transform function may be analytically continued for other
values.
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2.4 Important special cases

Definition 12.2: Let δ(t − a) be the Dirac delta function : thus, by definition, δ(t − a) = 0 for
t 6= a and δ(0) = ∞ in such a way that

R d
c f(t)δ(t − a)dt = f(a), if a ∈ (c, d) and zero if

a is outside the interval of integration. It is not really a "function" but a "distribution" or
linear functional. The Heaviside function is defined by,

H(x) = 0, (x < 0)

= 1, (x > 1) (18)

Then, it follows that,
R x
−∞ δ(u)du = H(x). Furthermore, H(0) can be defined as 1/2.

Theorem 12.3: We have the following formal results (a ≥ 0; proofs are exercises!):

L(δ(t − a)) =

Z ∞

0
e−stδ(t − a)dt = e−as (19)

L(H(t − a)) =

Z ∞

a
e−stdt =

e−as

s
(20)

L(ectf(t)) = f̂(s − c) (21)

L(f(t − a)H(t − a)) = e−as

Z ∞

a
f(t − a)dt = e−asf̂(s) (22)

L(f(
t

a
)) = af̂(as) (23)
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2.5 Laplace inversion formula

Consider the function, f̂(s) = a
s−b

, where a, b are arbitrary complex constants. Let us
try to find its inverse transform . This means: we must find f(t) such that f(t) = 0; t < 0

and
R ∞
0 e−stf(t)dt = f̂(s).

Bromwich contour integral : Note that f̂(s) has a simple pole at s = b. Let c be any real

number such that c > Re(b), and λ > 0 is any positive number and t is real. Let us
consider the integral,

Ic,λ(t) =
1

2πi

Z c+iλ

c−iλ
ets a

s − b
ds

Note that the integral is taken on a line parallel to the imaginary axis is the s-plane to the
right of the singularity of the integrand at s = b.

Now suppose t < 0. We close the contour with a semi-circle centre s = c, and radius
λ, running from c − iλ to c + iλ to the right of the line of integration. Evidently the
integrand is analytic in the region bounded by the vertical line Re(s) = c and the
semi-circle. By Cauchy’s theorem it vanishes. If now we let λ → ∞, it is easy to see that
|ets| = e−|t|R cos θ → 0; R ≃ λ; cos θ > 0 on the semi-circle. Hence, defining
f(t) = Limλ→∞

1
2πi

R c+iλ
c−iλ estf̂(s)ds, we see that f(t) = 0 for t < 0,as required!
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2.6 The inverse transform

Next we consider what happens when t > 0. Since in this case, est would tend to
zero for s on the semi-circle closing the contour in the left half plane , we consider the
contour integral,

I−c,λ(t) =
1

2πi

I

C
−

ets a

s − b
ds

where C− is the contour including the straight line from c − iλ to c + iλ as before, but
closed this time by the semi-circle on the left . This contour includes the pole at s = b in its
interior . Hence, by the Residue Theorem , we have, making use of the fact that the
integrand goes to zero on the semi-circle as λ → ∞,

f(t) = Limλ→∞I−c,λ(t)

=
1

2πi

Z c+i∞

c−i∞
ets a

s − b
ds

= aebt

Of course, we can check this Bromwich prescription for getting the inverse transform is
correct by directly taking the Laplace transform of f(t) and verifying that indeed we get
back the given f̂(s).
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2.7 The Bromwich contour integral

The general formula for the Laplace inverse transform is stated below without proof.

Laplace inversion formula: If f(t) vanishes for t < 0 and is suitably well-behaved, its direct

Laplace transform f̂(s) =
R ∞
0 e−stf(t)dt exists as an analytic function, free of

singularities for Re(s) > c (the abscissa of convergence). One can obtain f(t) from f̂(s)

by evaluating the Bromwich contour integral :

f(t) =
1

2πi

Z c+i∞

c−i∞
etsf̂(s)ds (24)

where the contour is any curve lying to the right of all singularities of f̂(s). In particular, it
may be chosen to be a vertical line, Re(s) = c.

Example 1: Suppose f̂(s) = ΣN
n=1

an

s−bn
. Then, f(t) = ΣN

n=1anebnt; t > 0 and zero
for negative t.
Example 2: Let an, bn be such that Re(bn) < c; n = 1, 2, .. and f̂(s) = Σ∞

n=1
an

s−bn
is a

meromorphic function which is bounded as s → ∞, then, f(t) = Σ∞
n=1anebnt; t > 0.
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2.8 Derivation of inversion formula

The following argument (not rigorous! ) shows how the inversion formula may be derived.
Suppose f̂(s) is a given analytic function, with no singularities for Re(s) > c, for some
c. We also assume that f̂(s) behaves “suitably” at infinity. Then, by Cauchy’s integral

theorem we have:

f̂(s) =
1

2πi

I

C

f̂(u)

s − u
du =

1

2πi

Z c+i∞

c−i∞

f̂(u)

s − u
du

where C is a contour composed of a vertical line to the right of c and an infinitely
large semi-circle. The integral is described in the clock-wise direction! Observe that for
Re(s) > c,

R ∞
0 e−t(s−u)dt = 1

s−u
. Substituting this in the above integral relation and

interchanging the order of integration, we obtain:

1

2πi

Z c+i∞

c−i∞

f̂(u)

s − u
du =

Z ∞

0
e−stdt[

1

2πi

Z c+i∞

c−i∞
etuf̂(u)du], hence,

=

Z ∞

0
e−stf(t)dt, where,

f(t) =
1

2πi

Z c+i∞

c−i∞
etuf̂(u)du (25)

This is the required inversion formula. The vertical line can be replaced by any contour
running to the right of c from−i∞ to i∞. AT – p.18/19



2.9 Simplest application

Consider a particle of mass m dropped from a height h above ground assuming a
constant gravitational acceleration −gez , and that the air resistance during its vertical

motion is −mνvz , where the constant ν is called the momentum relaxation rate and is a
measure of the drag on the particle. Calculate the motion, given initial data

z(0) = h; vz(0) = 0 We have to solve Newton’s equations of motion:

dz

dt
= vz (26)

m
dvz

dt
= −mνvz − mg (27)

To solve these equations, we take Laplace transforms of both equations. Using the rules
and initial conditions we get (check for yourselves!):

− h + sẑ(s) = v̂z(s)

(ν + s)v̂z(s) = −
g

s
, whence,

vz(t) = −g
1

2πi

Z c+i∞

c−∞

est

s(s + ν)
ds =

g

ν
[e−νt − 1]

z(t) =
1

2πi

Z c+i∞

c−∞
est[

h

s
−

g

s2(ν + s)
]ds = h −

g

ν
(t +

e−νt

ν
)
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