
Chennai Mathematical Institute
B.Sc Physics

Mathematical methods
Lecture 11: Complex analysis: the Gamma

function

A Thyagaraja

February, 2009

AT – p.1/19



1.1 The Gamma function of Euler

We have already seen how “elementary transcendental” functions can be studied in the
complex plane. In physics and engineering, several other new functions turn up. We are
going to study some of them.

Generalizing the factorial - the Gamma Function . Euler noticed that the familiar factorial, n!

can be given an "analytical expression". Consider the simple real integral, where a > 0:

Z ∞

0
e−atdt = 1/a (1)

You can check easily that the integral converges absolutely and may therefore be
repeatedly differentiated with respect to a. We obtain the formula:

dnI

dan
=

n!

an

=

Z ∞

0
tne−atdt hence,

n! =

Z ∞

0
tne−tdt (2)

AT – p.2/19



1.2 The “factorial integral”

This Eulerian formula is clearly derived for integer values of n. Euler noted the
remarkable fact that the key property of the factorial function, (n + 1)! = (n + 1)n! can
be extended to all real values of n. For this purpose, consider the integral,

Γ(s) =

Z ∞

0
ts−1e−tdt, (s > 0)

Obviously we have Γ(n + 1) = n! for integral n. Then, Gamma function satisfies the
following functional equation:

Γ(s + 1) = sΓ(s)
Z ∞

0
tse−tdt =

ˆ

−tse−t
˜∞

0
dt + s

Z ∞

0
ts−1e−tdt

= sΓ(s) (3)

upon integration by parts. The integral can be written in the form,
Γ(s) =

R ∞
0 e(s−1) ln te−tdt. We can differentiate this with respect to s, obtaining,

dΓ

ds
=

Z ∞

0
(ln t)e(s−1) ln te−tdt
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1.3 Gamma function: analytic continuation

Evidently this integral is absolutely convergent also and hence we see that Γ(s) is not
only differentiable, but has continuous derivatives of arbitrary order for all real s > 0.

The remarkable thing is, we can now analytically continue this function into the complex
plane! Thus, let z be a complex variable with Re(z) > 0. Consider the integral Γ(z):

Γ(z) =

Z ∞

0
e(z−1) ln te−tdt (4)

Note that this integral is taken with respect to the real variable, t.

From what has already been established, the following statements are readily deduced:
for real z, the function coincides with the Eulerian Gamma function; so long as z lies to
the right of the imaginary axis, the integral is defined and absolutely convergent.

Since the function so represented by the integral, Eq.(4) is differentiable with respect to
z, it defines the analytic continuation of Euler’s integral to the half plane. We also know
that from the properties of analytic continuation, the functional equation for the function
is also valid in this half-plane. We shall shortly locate the poles of this function and
analytically continue it maximally .

AT – p.4/19



1.4 “Reflection formula”

Consider the expression (for real 0 < s < 1 )

Γ(s)Γ(1 − s) =

Z ∞

0
ts−1e−tdt

Z ∞

0
u−se−udu

Substituting u = vt; du = tdv in the inner integral, we get,

Γ(s)Γ(1 − s) =

Z ∞

0
e−tdt

Z ∞

0
v−se−vtdv

Interchanging the order of integrations (justified by absolute/uniform convergence of
integrals!) we see that,

Γ(s)Γ(1 − s) =

Z ∞

0
v−sdv

Z ∞

0
e−t(1+v)dt

=

Z ∞

0

v−s

1 + v
dv

=
π

sin πs
(5)

where we make use of the previously established integral (Lecture 10, 3.4). Although
we have proved the formula for real s, by the principles of analytic continuation the
formula is valid for complex z in the right half plane. This formula provides a remarkable
connection between the Gamma function and trigonometric functions. AT – p.5/19



1.5 Application of the reflection formula

Setting s = 1/2, we obtain the result that Γ(1/2) =
√

π. However, this implies that,

Z ∞

0

e−t

t1/2
dt = 2

Z ∞

0
e−u2

du

=
√

π
Z ∞

−∞
e−u2

du =
√

π (6)

We have thus evaluated the "Gaussian integral" by a method involving contour
integration! We already know that Γ(1) = 1; Γ(2) = 1. If the formula applies for arbitrary

s we would conclude that the function has simple poles at s = 0,−1,−2, ... We shall
find that this is indeed true.

Let us consider the formula for 1/ tan z: obtained from its “pole expansion” like Eq.(16)
of Lecture 10:

1

tan z
=

1

z
+ Σ∞

n=1

2z

z2 − n2π2

Integrating, we get,

ln sin z = C + ln z + Σ∞
n=1 ln(1 − z2

n2π2
) (7)
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2.1 Infinite products

The constant C in Eq.(7) is evaluated using, Limz→0
sin z

z
= 1. Exponentiating we

derive the famous infinite product representation for sin z:

sin πz

πz
= Π∞

n=1(1 − z2

n2
) (8)

Putting z = 1/2, we see that π/2 is expressed as a product involving 4n2! This
product expresses the entire analytic function , sin z in terms of its zeros located at nπ on
the real axis.

Some basic results are stated about the convergence of infinite products. The proofs are
indicated in the problems for this Lecture.
Definition 11.1: Suppose that an ≥ 0 for all n. Consider the expression,
pN = ΠN

n=1(1 + an). We say that the infinite product P = Π∞
n=1(1 + an) converges if the

limit, LimN→∞pN = P exists.

Theorem 11.1: The product Π(1 + an) and the sum, Σan converge or diverge (to infinity)
together.
Proof: We have the simple inequalities:

a1 + .. + an ≤ (1 + a1)(1 + a2)..(1 + an) ≤ exp [a1 + a2 + .. + an]

The stated result is immediate. AT – p.7/19



2.2 More about infinite products

When an is not necessarily positive, we assume that an 6= −1. It can happen that
pN → 0, in which case we say the infinite product diverges to zero . Thus, an infinite
product is regarded as convergent only if its value tends to a non-zero limit. The following
results are stated without proof, and may be used freely.

Theorem 11.2: Suppose an ≤ 0 for all n. Let bn = −an. If bn 6= 1 for all n, Π(1 − bn)

converges if Σbn does and if 0 ≤ bn < 1, it diverges to zero if Σbn diverges (to infinity,
as it is a series of positive terms).

Definition 11.2: Let an be any sequence of numbers, real or complex. We assume
an 6= −1. We say that the product Π(1 + an) is absolutely convergent if Π(1 + |an|) is
convergent. Obviously, a necessary and sufficient condition for the absolute
convergence of a product is that is that the series, Σan should be absolutely convergent.

Theorem 11.3: An absolutely convergent infinite product is convergent.

Referring to Eq.(8), since we know that Σ∞
n=1| z2

n2 | is always convergent, the infinite
product converges absolutely for all z (not counting the zeros).
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2.3 Infinite product for entire functions

Theorem 11.4: Let f(z) be an entire function. We know that it may have zeros (or it may
have no zeros at all like ez) which must be isolated points in any finite part of the plane.

Assume that the zeros are simple and denote them: a1, a2, ... If f ′(z)
f(z)

satisfies the

conditions of Theorem 10.1 of Lecture 10, we have the following infinite product

representation:

f(z) = f(0)e
z

f′(0)
f(0) Π∞

n=1(1 − z

an
)e

z
an (9)

Proof: In the neighbourhood of an, the function has an expansion, f(z) = (z − an)g(z),

where g(z) is analytic and does not vanish. Thus, f ′(z)
f(z)

= 1
z−an

+
g′(z)
g(z)

. Now if f ′(z)
f(z)

satisfies the conditions of Theorem 10.1, on meromorphic functions, we have the “pole”
expansion formula:

f ′(z)

f(z)
=

f ′(0)

f(0)
+ Σ∞

n=1

»

1

z − an
+

1

an

–

(10)

Integrating and exponentiating (missing out some analytical subtleties!) we obtain the
stated product representation. It is also possible to construct an entire function with
prescribed zeros by generalising this basic idea.
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3.1 Euler product formula

We now develop the theory of the Gamma function from a different and historically
interesting angle. Consider the finite product,

Gn(z) =
1.2....(n − 1)nz

z(z + 1)..(z + n − 1)

where z is not equal to a negative integer. Then,
Gn+1(z)

Gn(z)
= n

n+z
(n+1)z

nz = (1 − z
n

+ z2

n2 ..)(1 + z
n

+
z(z−1)

2n2 + ...) = 1 +
An(z)

n2 .

Evidently, Limn→∞An(z) =
z(z−1)

2
. This implies,

Limn→∞Gn+1(z) = Limn→∞G2(z).
G3(z)

G2(z)
...

Gn+1(z)

Gn(z)

=
1

z
Π∞

n=1

»

(1 +
1

n
)z(1 +

z

n
)−1

–

(11)

converges and defines an analytic function for all z except for z = 0,−1,−2, ...
Following Euler we set this limit equal to Γ(z). We can rather easily demonstrate from
this product definition of Euler’s that Γ(z + 1) = zΓ(z). Thus:
Γ(z+1)
zΓ(z)

= 1
z+1

»

Limm→∞Πm
n=1

(1+ 1
n

)z+1

1+ z+1
n

–

/

»

Limm→∞Πm
n=1

(1+ 1
n

)z

1+ z
n

–

=

1
z+1

Limm→∞Πm
n=1

»

(1+ 1
n

)(z+n)

z+n+1

–

= Limm→∞
m+1

z+m+1
= 1.
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3.2 Euler product formula: contd.

We now have to show that this is exactly the function we previously defined via Eq.(4).
Note that in that equation we assumed that the real part of z has to be positive. To do
this, we consider the following finite integral, for Re(z) > 0 and integrate it by parts
repeatedly to obtain,

gn(z) =

Z n

0
(1 − t

n
)ntz−1dt

= nz

Z 1

0
(1 − u)nuz−1du

Z 1

0
(1 − u)nuz−1du =

»

1

z
uz(1 − u)n

–

+
n

z

Z 1

0
(1 − u)n−1uzdu

= .....

=
n(n − 1)...1

z(z + 1)..(z + n − 1)

Z 1

0
uz+n−1du

This proves that gn(z) = n
n+z

Gn(z). It can be shown directly that,

Limn→∞gz(z) =

Z n

0
(1 − t

n
)ntz−1dt =

Z ∞

0
e−ttz−1dt = Γ(z)
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3.3 Euler’s constant and Weierstrass’ product

Euler’s constant:

Limn→∞[
1

1
+

1

2
+ .. +

1

n
] − ln n = γ = 0.5772157..

Proof: Consider,

un =

Z 1

0

t

n(n + t)
dt

=
1

n
− ln

n + 1

n
<

Z 1

0

dt

n2
=

1

n2

Now, 0 < un < 1
n2 . Hence, by the comparison text , Σ∞

n=1un converges. This proves
the result.

Weierstrass defined the Gamma function by the infinite product:

1

Γ(z)
= zeγzΠ∞

n=1(1 +
z

n
)e−

z
n (12)

This is readily shown to be equivalent to Euler’s product, Eq.(11). It shows that 1
Γ(z)

is

an entire function with simple zeros at z = 0,−1, ... It also shows that Γ(z) can have no
zeros.
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3.4 Asymptotic expansions

If Sn(z) = Σn
m=1um(z) is an infinite series of functions, we know that it converges at

some z = z0, if the limit, Limn→∞Sn(z0) exists.

Definition 11.3: Suppose a sequence of functions (un(z)) has the properties,

Limz→z0un(z) = 0; Limz→z0

un+1(z)

un(z)
= 0, for each n. Then the sequence is said to be

an asymptotic gauge sequence . If f(z) is a function and Fn(z) = Σn
m=1fmun(z), we say

that the partial sums Fn(z) are asymptotic to f(z) at z = z0 if the following relation is true
for any fixed n :

Limz→z0

f(z) − Fn(z)

un(z)
= 0

Note that the sequence Fn(z) could actually be divergent at any fixed z as n → ∞!
Example:

f(x) = ex

Z ∞

x
e−t dt

t
(x > 0)

=
1

x
− 1

x2
+ ..(−1)n−1 (n − 1)!

xn
+ (−1)nex

Z ∞

x
e−t dt

tn+1

repeatedly integrating by parts. The series is divergent for fixed x, but is asymptotic for
fixed n and large x.
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3.5 Asymptotic expansions: contd.

Some observations: In most cases, we are interested in the behaviour of a function for
large |z|. The idea is to approximate the function by some simple, elementary functions
whose behaviour is well-understood. An asymptotic series is usually a divergent series
which gives an extremely good approximation to the function as |z| → ∞, for any fixed

number of terms. Thus, given f(z), we say, Σ∞
n=0

an
zn is asymptotic to f if, for any given

n we have:

Limz→∞zn(f(z) − Σn
m=0

am

zm
) = 0

provided Arg(z) is suitably restricted to some sector. We then write, f(z) ≃ Σ∞
n=0

an
zn ,

although the series may actually be divergent.

Given a function, and the gauge sequence, the asymptotic expansion of the function is
unique : For example,

an = Lim|z|→∞zn(f(z) − Σn−1
n=1

an−1

zn−1
)

However, the same asymptotic expansion can represent two different functions!

Asymptotic series can be added and multiplied and integrated. They can be
differentiated if the function can be differentiated and the derivative has an asymptotic
expansion.

Asymptotic expansions in the complex plane are usually valid only in restricted regions.
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3.6 Stirling’s formula

Laplace’s method: Let s > 0 be large and real. We wish to obtain an asymprtotic formula
for Γ(s + 1) =

R ∞
0 es ln t−tdt. We make a preliminary transformation,

t = su; Γ(s + 1) = ss+1
R ∞
0 es(ln u−u)du.

The function, ln u − u has a maximum at u = 1. Thus, if s is large and positive, most
of the contribution to the integral comes from this point. Expanding the exponent in a
Taylor series about the maximum, we have,

s(ln u − u) ≃ −s − s
(u − 1)2

2
+ ..

It then follows that,

Γ(s + 1) ≃ ss+1e−s

Z ∞

0
e−s

(u−1)2

2 du

When s is large, the integrand is nearly zero at u = 0. We may take the lower limit to
be −∞ to this degree of approximation. Then the integral is readily evaluated (using
Lecture 10!) and we obtain the famous Stirling formula for the factorial:

Γ(s + 1) ≃
p

(2π)ss+1/2e−s
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3.7 Watson’s lemma

The following lemma due to Watson can often be used to justify asymptotic expansions.
The proof is not needed in this Course.

Watson’s Lemma: Let 0 < λ1 < λ2 < ..; λn → ∞; we further assume that
φ(t) = Σ∞

n=1antλn−1; |t| < a and |φ(t)| < Kebt; K, B > 0 for t > a. Then,

f(z) ≡
Z ∞

0
e−ztφ(t)dt

≃ Σ∞
n=1anΓ(λn)z−λn (13)

when |z| is large and |Arg(z)| ≤ π
2
− ∆, where ∆ > 0 is an arbitrary positive number.

Example:

f(z) =

Z ∞

0

e−zt

1 + t
dt

=

Z ∞

0
e−zt(Σ∞

n=0(−1)ntn)dt

=
1

z
− 1!

z2
+

2!

z3
+ .. (|z| → ∞; |Arg(z)| < π/2) (14)
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4.1 The saddle point method

I am going to discuss a very powerful method of deriving asymptotic expansions of
certain types of integrals. This is called the saddle-point method , or sometimes, the method

of steepest descent .

Consider the analytic function defined by the contour integral:

F (z) =

Z

C
ezf(t)dt (15)

We suppose that f(t) is analytic and the path of integration (not closed but usually a
simple contour) is such that the integrand tends to zero at the end points. Consider first
the case when z is a large positive number, s.

The maximum contribution to the integral must come from where the real part of f(t) is
largest. Evidently Re[f(t)] → −∞ near the endpoints. Now, since this is an analytic
function, from the maximum modulus principle, we know it cannot have a true maximum
or minimum, but only a “saddle point”.

Thus consider f(t) = u(ξ, η) + iv(ξ, η); t = ξ + iη. The function, u(ξ, η) is harmonic

and therefore has a saddle point at (ξ0, η0), say, where uξ = uη = 0. From the
Cauchy-Riemann equations we know that, vξ = vη = 0 and hence, f ′(t0) = 0. We
assume that f ′′(t0) 6= 0.
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4.2 Saddle geometry

Using Taylor’s theorem locally,

f(t) − f(t0) =
f ′′(t0)

2!
(t − t0)2 + ..

Let us set: f ′′(t0) = αeiβ ; α = |f ′′(t0)|, t − t0 = ρeiθ; ρ = |t − t0|. Then, in the
neighbourhood of the saddle-point, neglecting higher order terms, we must have,
u(ξ, η) − u(ξ0, η0) = α

2
ρ2 cos(β + 2θ); v(ξ, η) − v(ξ0, η0) = α

2
ρ2 sin(β + 2θ). If we

write, φ = θ + β/2,

u − u0 =
α

2
ρ2 cos(2φ) =

α

2
(λ2 − µ2)

v − v0 =
α

2
ρ2 sin(2φ) =

α

2
(2λµ)

where λ = ρ cos φ; µ = ρ sin φ,. Then, the contours, u = const are rectangular
hyperbolas with asymptotes, λ = ±µ. The curves of the conjugate harmonic function

v = const is the orthogonal system of rectangular hyperbolas with asymptotes,
λ = 0, µ = 0. The surfaces, u(λ, µ) = const clearly exhibit the “saddle” nature. The
regions, bounded by the two asymptotes( λ = ±µ) of u including the line, µ = 0,
correspond to “mountains” and the complementary sectors, including the line, λ = 0,
are “valleys” in this “local landscape” around the “saddle point”, λ = µ = ρ = 0.
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4.3 Steepest descent evaluation

Let us return to Eq.(15). We assume that f(t) has a single saddle point at t0 and set
z = s >> 1, the end point conditions imply that C must run from one valley to another.
Using Cauchy’s theorem we deform C to run through t0. If we choose the path C∗,
corresponding to λ = 0 → v = v0, sf(t) = sf(t0) − sα

2
µ2, the real part decreases as

fast as possible and the imaginary part is constant. We then obtain:

F (s) ≃ esf(t0)

Z

C∗

e−s α
2

µ2
dµ

≃ esf(t0)

Z ∞

−∞
e−

sα
2

µ2
dµ

We may take the end points to be infinity and integrate with respect to µ, a real variable
along the curve of “steepest descent”, λ = 0; v = v0. Using the results of Lecture 10,
Section 4.1, we obtain,

F (s) ≃ [
2π

s|f ′′(t0)| ]
1/2esf(t0)

Why do we choose the “contour of steepest descent”? On any other contour , the
equation, v(ξ, η) = v0 does not hold. The integrand is highly oscillatory and all parts of
the contour contribute. On the path of steepest descent, we have a Gaussian/monotonic

decrease of the integrand, facilitating the evaluation.
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