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1.1 Cauchy principal values of integrals

Hitherto we have considered contour integrals which have poles within the region they
enclose; what happens if they have a simple pole on the contour? Consider the following
integral:

I =

Z ∞

−∞

dx

x2 − 1
(1)

Clearly, there is a problem at x = ±1, although the integrand is well-behaved at infinity.
If we examine the behaviour of the integrand near x = 1 (say), we note that it is odd

about this point, changing sign from −∞ to +∞ as x increases from 1 − ǫ to 1 + ǫ.
Cauchy noticed that by excluding the interval, (1 − ǫ, 1 + ǫ) one could integrate the
function and then take the limit as ǫ → 0.

If the limit exists we could then define the integral by this second limiting process, beyond
that implicit in the concept of the integral as the limit of a sum. Obviously, if the definition
is used at a regular point of the integrand, we’ll simply get back the standard integral!

Cauchy’s limiting value for such singular integrals involves a specific, double limiting process.

It is important to remember that the limit may not always exist but does, in many cases of
physical interest. It is well-adapted to evaluation by residue calculus, as we shall
discover.
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1.2 Cauchy principal values: contd.

Definition 10.1: Let f(x) be continuous in some interval [a, b], and there is a point
x0 ∈ (a, b) such that the integrals,
I((a, x0 − ǫ) =

R x0−ǫ
a f(x)dx, I(x0 + ǫ, b) =

R b
x0+ǫ f(x)dx exist for arbitrary ǫ > 0. If

the limit ,

Limǫ→0+

»Z x0−ǫ

a
f(x)dx +

Z b

x0+ǫ
f(x)dx

–

= Limǫ→0+ [I(a, x0 − ǫ) + I(x0 + ǫ, b)]

= P

Z b

a
f(x)dx (2)

exists , then the RHS is called the Cauchy principal value of the integral,
R b

a f(x)dx.

Example 1: Evaluate the integral:

J =

Z ∞

−∞

dx

x(x − ia)
(a > 0)

The integrand has simple poles at the origin and also at z = ia. The integral is to be
evaluated as a Cauchy Principal Value. Consider the contour C(R; ǫ) made up of:
−R,−ǫ along the negative real axis, the “little semi-circle” |z| = ǫ in the upper half-plane,
(ǫ, R) and the “large semi-circle” |z| = R in the upper half-plane.
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1.3 Cauchy principal values: contd.

From the residue theorem we obtain (f(z) = 1
z(z−ia)

):

I

C(R;ǫ)

dz

z(z − ia)
= 2πiRes(z = ai)

=

Z −ǫ

−R
f(x)dx +

Z 0

π

iǫeiφdφ

ǫeiφ(ǫeiφ − ia)

+

Z R

ǫ
f(x)dx +

Z π

0

iReiφdφ

Reiφ(Reiφ − ia)

The residue is easily seen to be, 1
ia

. The integral over the “little semi-circle” equals π
a

.

The integral over the “large semi-circle” satisfies, |
R π
0

iReiφdφ
Reiφ(Reiφ−ia)

| < π
R−a

; R > a.

Hence, taking the limit as R → ∞; ǫ → 0+, we get,

P

Z ∞

−∞

dx

x(x − ia)
=

π

a

= 2πi[Res(z = ai) +
1

2
Res(z = 0)]

What would have happened had we chosen to close the large semi-circle in the lower

half plane ?
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1.4 Cauchy principal values: contd.

This time, we retain the little semi-circle and close the large semi-circle in the lower

half-plane enclosing the pole at the origin. From the residue theorem we obtain, for the
same function:

I

C
−

(R;ǫ)

dz

z(z − ia)
= 2πiRes(z = 0)

=

Z +ǫ

R
f(x)dx +

Z π

0

iǫeiφdφ

ǫeiφ(ǫeiφ − ia)

+

Z −R

−ǫ
f(x)dx +

Z 2π

π

iReiφdφ

Reiφ(Reiφ − ia)

The residue at the origin is, − 1
ia

. The integral over the “little semi-circle” equals −π
a

.

The integral over the “large semi-circle” satisfies, |
R 2π

π
iReiφdφ

Reiφ(Reiφ−ia)
| < π

R−a
; R > a.

Hence, taking the limit as R → ∞; ǫ → 0+, and suitably rearranging we get,

P

Z ∞

−∞

dx

x(x − ia)
=

π

a

Exactly as before! This technique of avoiding the “pole on the contour” is called indenting

the contour”.

AT – p.5/20



2.1 Hilbert transform, dispersion relations

Let f(z) be analytic in a region including the upper half-plane and the real axis. Let
|f(z)| → 0; z = Reiθ; R → ∞, uniformly in θ. If a is in the upper half-plane and C is
any contour enclosing a, Cauchy’s integral gives:

1

2πi

I

C

f(z)dz

z − a
= f(a) (3)

Letting Im(a) = 0 and choosing C+(R, ǫ) - real axis indented below by a little
semi-circle,

f(a) =
1

2πi

Z a−ǫ

−R

f(x)dx

x − a
+

1

2πi

Z R

a+ǫ

f(x)dx

x − a
+

1

2πi

Z 2π

π

f(a + ǫeiφ)iǫeiφdφ

ǫeiφ
+ I(R)

where the last term is the integral over the “large semi-circle”.

Taking the limits, R → ∞, ǫ → 0, we get, upon noting that I(R) → 0

P

Z +∞

−∞

f(x)dx

x − a
= πif(a) (4)
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2.2 Hilbert transforms: crossing relation

Separating real and imaginary parts in Eq.(4), we get the Hilbert transform pair/dispersion

relations :

u(a) =
1

π
P

Z +∞

−∞

v(x)dx

x − a
(5)

v(a) = − 1

π
P

Z +∞

−∞

u(x)dx

x − a
(6)

Such relations play an important role in many areas of physics and mathematics,
particularly in optics, particle physics/scattering theory. Note that to calculate u(x) at a
single point, we need v(x) on the entire real axis!

In physical problems one has a crossing relation :
f(−x) = f̄(x) → u(−x) + iv(−x) = u(x) − iv(x). This implies that u(x) is even and
v(x) is odd (as a functions of x ). Then, the dispersion relations take the forms:

u(a) =
1

π
P

Z ∞

0
v(x)[

1

x + a
+

1

x − a
]dx

=
2

π

Z ∞

0

xv(x)

x2 − a2
dx (7)

v(a) = − 2

π

Z ∞

0

au(x)

x2 − a2
dx (8)
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3.1 Residue calculus: further examples

Example 2: Evaluate the integral, for k > 0,

I(k) =

Z ∞

−∞

sin kx

x
dx

We consider the function eikz

z
, analytic in the upper half-plane except for the pole at

the origin and“small” on the “large semi-circle” |z| = R; 0 < θ < π. Consider the
contour, C(R, ǫ) with two semi-circles and symmetric intervals on the real axis. The
function is analytic in the region enclosed by C(R, ǫ).

I

C(R,ǫ)

eikz

z
dz =

Z −ǫ

−R

eikx

x
dx +

Z R

ǫ

eikx

x
dx

+

Z 0

π

eikǫeiθ

ǫeiθ
iǫeiθdθ +

Z π

0

eikReiθ

Reiθ
iReiθdθ

= 0

We can combine the first two integrals on the RHS to obtain, 2i
R R

ǫ
sin kx

x
dx and take

the limits, R → ∞; ǫ → 0, and obtain, after using the evenness of the integrand and
Jordan’s Lemma:

I(k) =

Z ∞

−∞

sin kx

x
dx = π
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3.2 Residue calculus: multi-valued functions

What about infinite integrals over the range (0,∞)? The next example shows the use
of multi-valued functions in contour integrals.
Example 3: Evaluate the integral,

J =

Z ∞

0

x

1 + x3
dx

We begin by considering the analytic function, f(z) = z ln z
1+z3 . We note that ln x is real

for x > 0 and consider ln z in the plane cut along the positive real axis. The function is
holomorphic in this cut plane and takes the value, ln x + 2πi on the “lower edge” of the
cut. Let C(R, ǫ) be a contour comprising a “little circle” around the origin of radius ǫ > 0

and a “large circle” of radius R > 1. The function f(z) is holomorphic in this region
except for simple poles at z = eiπ/3,−1, ei5π/3. The residue theorem then gives:

I

C(R,ǫ)
f(z)dz =

Z R

ǫ

x ln x

1 + x3
dx +

Z 2π

0

Reiθ ln(Reiθ)iReiθ

1 + R3ei3θ
dθ

+

Z ǫ

R

x(ln x + 2πi)

1 + x3
dx −

Z 2π

0

ǫeiθ ln(ǫeiθ)iǫeiθ

1 + ǫ3ei3θ
dθ

= 2πi(r1 + r2 + r3)
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3.3 Multi-valued functions: contd.

We see that the integrals over the large and little circles go to zero when we take limits
and observe that the integrals along the cuts “combine” and give a contribution only from
the discontinuity of the logarithm at the cut. The residues are:

r1 = iπ
3

eiπ/3

3e2iπ/3 = i π
9
e−iπ/3 = i π

9
[ 1
2
− i

√
3

2
]

r2 = − iπ
3

r3 = i5π
3

ei5π/3

3ei10π/3 = i5π
9

[ 1
2

+ i
√

3
2

] hence,

J =

Z ∞

0

x

1 + x3
dx

=
2π

3
√

3

Example 4: Suppose that 0 < a < 1. Evaluate the integral,

G(a) =

Z ∞

0

xa−1

1 + x
dx
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3.4 More about multi-valued functions

We consider the integral,
R

za−1

1+z
dz. The contour, C(R, ǫ) used in the previous

problem turns out to be relevant. This integral is absolutely convergent and has the

correct behaviour on both “little” and “large” circles. The integrand za−1 = ei(a−1) ln z

1+z
is

not holomorphic in the whole plane, but is, in the cut plane region enclosed by C(R, ǫ)

apart from the simple pole at z = −1. Applying the residue theorem we get:

I

C(R,ǫ)

za−1

1 + z
dz =

Z 2π

0

(Reiθ)a−1

1 + (Reiθ)
iReiθdθ −

I 2π

0

(ǫeiθ)a−1

1 + (ǫeiθ)
iǫeiθdθ +

Z R

ǫ

xa−1

1 + x
dx +

Z ǫ

R

(xe2πi)a−1

1 + x
dx

= 2πiRes(z = −1)

Taking the limits and re-arranging after calculating the residue, we see that:

(1 − e2πi(a−1))

Z ∞

0

xa−1

1 + x
dx = 2πie(a−1)iπ consequently,

Z ∞

0

xa−1

1 + x
dx =

π

sin aπ
(10)

We will need this result later, in the theory of the Gamma function.
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4.1 More examples!

Example 5: Show that,
Z ∞

−∞
e−x2

dx =
√

π (11)

Z ∞

−∞
e−x2

e−2ibx =
√

πe−b2 (12)

Proof: The first integral is not suitable for contour integration but can be done as follows:

let I =
R ∞
−∞ e−x2

dx. Then,

I2 = (

Z ∞

−∞
e−x2

dx)(

Z ∞

−∞
e−x2

dx)

=

Z ∞

−∞

Z ∞

−∞
e−(x2+y2)dxdy

=

Z 2π

0

Z ∞

0
e−r2

rdrdφ

= π[−e−r2
]∞0

The result follows upon taking square roots on both sides. To do the second integral, we

consider a rectangular contour, C(R, b) : ±R,±R + ib, and the entire function, e−z2
.
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4.2 More examples: contd.

We are required to show that,
Z ∞

−∞
e−x2

e−2ibx =
√

πe−b2

Proof: Consider:
I

C(R,b)
e−z2

dz =

Z R

−R
e−x2

dx +

Z b

0
e−(R+iy)2 idy

−
Z R

−R
e−(x+ib)2dx −

Z b

0
e−(R−iy)2 idy

= 0

However, we observe that,

|
Z b

0
e−(R+iy)2 idy| ≤

Z |b|

0
e−R2+y2

dy

< |b|e−R2+b2

= 0

Taking the limit as R → ∞ we get the required result-a very important one in Fourier
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4.3 More examples: contd.

Example 6: Show that for −π/4 ≤ φ ≤ π/4,

Z ∞

0
e−r2 cos(2φ)−ir2 sin(2φ)dr =

√
π

2
e−iφ (13)

Note that
H

C(R,φ e−z2
dz = 0, where C(R, φ) is the closed contour bounding the

sector, |z| ≤ R; 0 ≤ θ = Arg(z) ≤ φ. Then,

Z R

0
e−x2

dx +

Z φ

0
e−R2 cos 2θ−iR2 sin 2θiReiθdθ =

Z R

0
e−r2 cos 2φ−ir2 sin 2φeiφdr

Since,

|
Z φ

0
e−R2 cos 2θ−iR2 sin 2θiReiθdθ| ≤ R

Z π/4

0
e−R2 cos 2θdθ

= R

Z π/2

0
e−R2 sin udu <

π

4R

Using Jordan’s Lemma . Taking the limit as R → ∞, we get the stated result. Putting
φ = π/4, we get the famous Fresnel integral of diffraction theory:

Z ∞

0
e−ir2

dr =

√
π

2
e−iπ/4 (14)
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5.1 Meromorphic functions

We have seen how analytic functions may be represented by power series and by contour

integrals . We next consider a new type of representation which brings the poles of the
function into full view.

Definition 10.2: A function is said to be meromorphic in a region if it is holomorphic in the
region except for a finite number of poles within it.

The simplest meromorphic functions are rational functions. We know that all rational
functions can be expressed in terms of partial fractions . An interesting question is: can we
do something similar to a partial fraction expansion for meromorphic functions?

Theorem 10.1: Let f(z) be a function whose only singularities, except at infinity, are poles.
Let all the poles be simple and are to be located at a1, a2, .. where,
0 < |a1| ≤ |a2| ≤ |a3| ≤ ... with residues, r1, r2, ... Suppose there is a sequence of
contours Cn such that Cn includes a1, a2, .., an but no other poles. We also assume
that the minimum distance Rn of Cn from the origin tends to infinity with n and the
length Ln of Cn, where Ln

Rn
< K, a constant independent of n. We further assume that

|f(z)| is bounded on the entire system of contours Cn. Under these conditions, the
following simple pole expansion formula holds for all values of z except at the poles.

f(z) = f(0) + Σ∞
m=1rm

»

1

z − am
+

1

am

–

(15)
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5.2 Meromorphic functions: representation

Proof: We start by considering the integral In(z), where z is inside Cn, not coincident
with any of the interior poles or the origin:

In =
1

2πi

I

Cn

f(w)

w(w − z)
dw

Note that the integrand has two sets of poles in the domain enclosed by Cn: the poles
of f(w), a1, .., an and the poles at w = 0, w = z. At the first set of poles am, the

integrand has residues, rm
am(am−z)

. At w = 0, the residue is, − f(0)
z

. Similarly, at

w = z, the residue is f(z)
z

. Cauchy’s residue theorem then gives:

In = Σn
m=1

rm

am(am − z)
− f(0)

z
+

f(z)

z

We can directly estimate the integral:

|In| ≤ Ln

2πRn(Rn − |z|)MaxCn |f(w)|
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5.3 Meromorphic functions: contd.

If we now let n → ∞, we see that In → 0, thanks to our assumptions about f(w).
This implies that,

f(z)

z
=

f(0)

z
− Limn→∞Σn

m=1

rm

am(am − z)

f(z) = f(0) + Σ∞
m=1rm

»

1

z − am
+

1

am

–

as asserted. Note that the series converges uniformly inside any contour which does
not contain any of the poles.

What if the function f(z) has a multiple pole of finite order pn > 1 at an, for example?
How do we deal with this case? To take a specific example, let us consider a1 and
assume that the function has a pole of finite order p1 > 1 there. For example, let us
take p1 = 2. We shall take the other poles to be simple, as before. By a slight
generalisation of the argument, it can be shown that:

f(z) = f(0) + Σ∞
m=1rm

»

1

z − am
+

1

am

–

+ b−2

»

1

(z − a1)2
− 1

a2
1

–
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5.4 Mittag-Leffler expansions

We can turn this around and ask: “given a set of points, a1, a2, .. in the plane, can we
construct a meromorphic function with only poles at these points and having prescribed

principal parts at the poles?” The answer is “yes” and the construction is given by the
Mittag-Leffler Theorem . First we consider an easy special case:

Theorem 10.2: Let a1, .., an be a finite set of points in the complex plane. We consider the
polynomials, p1(z), .., pn(z) with pj(0) = 0. Then, a meromorphic function (in fact a
rational function!) with poles at the aj and principal parts, pj(

1
z−aj

) is given by,

f(z) = Σn
j=1pj(

1

z − aj
)

This construction is not unique since any entire function added to the RHS gives another
function with the same “singularity structure”. If there are an infinity of poles, we must not
have any finite limit points, as then the function would have an essential singularity. As
long as an → ∞, we may use the above construction if the series converges .

Theorem 10.3: If |ar| ≤ |as|; r ≤ s, and the poles tend to infinity, there exists a set of
polynomials qj(z) such that,

f(z) = p0(
1

z
) + Σ∞

j=1[pj(
1

z − aj
) − qj(z)]
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5.5 Example 1

Example 1: Consider the function,

f(z) =
1

sin z
− 1

z

The function is taken to be zero at z = 0. Since at z = nπ, where n is a non-zero
positive or negative integer, sin z has a zero, f(z) has simple poles. The origin is a
removeable singularity . The residue at z = nπ:

Limz→nπ(z − nπ)f(z) = (−1)n

It can be shown that the function satisfies the conditions of Theorem 10.1 . Thus we have
the expansion:

1

sin z
− 1

z
= Σn=∞

n=1 (−1)n(
1

z − nπ
+

1

nπ
)

+Σn=−1
n=−∞(−1)n(

1

z − nπ
+

1

nπ
)

Each of the series on the RHS separately converges. We can combine them in pairs
and obtain the remarkable formula:

1

sin z
=

1

z
+ 2zΣ∞

n=1

(−1)n−1

n2π2 − z2
(16)
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5.6 Example 2

Example 2: Consider,

g(z) =
1

ez − 1
− 1

z

There is a removeable singularity at the origin. The poles occur at z = 2nπi where n is
a non-zero integer. The residue there is:

Limz→2nπi(z − 2nπi)g(z) = 1

Verifying the other conditions of the expansion theorem, we find,

g(z) = g(0) + Σ∞
n=1(

1

z − 2nπi
+

1

2nπi
)

+Σ−1
n=−∞(

1

z − 2nπi
+

1

2nπi
)

As before, we may combine the ±n terms and obtain the result:

1

ez − 1
=

1

z
− 1

2
+ 2zΣ∞

n=1

1

z2 + 4n2π2
(17)

Other important expansions of this type will be treated in the problem set.
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