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1. Multi-valuedness and branch points

Let us consider the function w(z) defined by the equation, w2(z) = z. For real positive
z = x, we know that there are two solutions, w+(x) =

√
x; w−(x) = −√

x. There
seems to be no connection between them. Indeed, for x > 0, the two values,
w+(x), w−(x) differ by a finite amount. Now let us consider the behaviour in the
complex plane.

Let us start by using the "Modulus-amplitude" representation for z = reiθ , with
r > 0; 0 ≤ θ < 2π. Then, w+(z) = r1/2eiθ/2; w−(z) = −r1/2eiθ/2.

If we start at the point r; θ = 0, where w+ = r1/2 and move around the origin

counter-clockwise in the direction of θ increasing, and approach the starting point from
below the real axis with θ = 2π − ǫ, we see that w+ ≃ −r1/2. In fact, we do not return

to the value we started from but end up with w−(r) = −r1/2!

However if we continuously move around along a closed contour which does not contain
the origin in its interior , both w±(z) clearly return to their initial values.

Remarks: A branch point of an analytic function is a singular point around which the
function fails to be single-valued/holomorphic . The function may be differentiable there: e.g
w(z) = z5/2. This implies the function can be bounded at a branch point.
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2. Branch points of analytic functions

We note that both w+(z), w−(z) are differentiable at any point z 6= 0. The origin is a
point where they not only fail to have a derivative, but also if we go round it and return to
the starting point (wherever we start from, as you can convince yourselves) continuously

moving along a simple closed contour , the two functions turn into each other .

It is easy to show that around the "point at infinity" the behaviour is similar. The upshot is
that at each z, we seem to have two branches of the same function, both analytic (except at

the origin and infinity). This double-valuedness invalidates many theorems on analytic
functions. We now look at methods devised by Riemann and his successors to get around
this difficulty.

Definition 8.1: A point in the complex plane in the neighbourhood of which an analytic
function fails to be single-valued when continuously following its values around a simple
closed contour enclosing (but not passing through ) the point is called a branch point of the
function. Each complete circuit around the branch point will "transmute" the function
value to a possibly different branch. If we return to the original branch after a finite

number of circuits, the branch point is of finite order .
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3. Branch cuts: examples

To get over the difficulty of multi-valuedness, a simple device called a branch cut can be
used. Thus, imagine we cut the complex plane from the origin to infinity along the positive

real axis .

This is a line which joins the two branch points of the function, w(z) =
√

z. If we start
from any point and describe any curve which does not pass through any branch point and does

not cross the cut and returns to the point, each branch, w+, w− is single-valued.

If we start at a point x + iǫ, just above the real axis and come to its “neighbour” x − iǫ

which lies just below it “under” the cut, the function is discontinuous across the cut .
However, so long as we agree to treat the cut as a barrier which we may not cross, both
branches remain holomorphic in the cut plane . The branch cut is to be treated like a solid
“wall”.

With these conventions, we may treat either branch of the function as a legitimate
holomorphic function in the cut-plane and apply all our theorems.

However, we note that we cannot encircle the origin (or the point at infinity) by any closed
curve in the cut plane! This implies that both those points are not isolated singularities of
the function and the function does not have Laurent-Taylor expansions about them.
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3. Branch cuts: (contd.)

It should be very clearly understood that we are allowed to put the “cut” in an infinity of ways!

For example, we can choose any ray from the origin to infinity to be the cut. In fact, we
can draw any simple contour from the origin to infinity and make that the cut. Then all
closed contours used by us must never cross the cut in order to maintain the
“holomorphy” of our function branches.

If you think about this carefully, it is clear we can define two holomorphic branches in the
cut plane which are discontinuous across the cut and which “transmute” into each other
there. In physical problems, the location and the nature of the cut will be dictated by the
conditions of the problem, as we will discover. To summarize, only the topology of the cut
plane matters: in the present example, the two branch points of the function are
connected by a cut which makes the domain of holomorphy multiply-connected .

Example: Consider w2(z) = (z − a)(z − b), where a, b 6= 0 are arbitrary complex
constants. By considering circles in the neighbourhood of z = 0, z = ∞, we see that the
function is single-valued there: if any curve C encloses/excludes both points a, b, the two
branches of the function remain single-valued, but in the neighbourhood of one of them,
a complete circuit “transmutes” one branch into the other. Introducing a “straight cut”
joining z = a, z = b, we can make
w+(z) = (z − a)1/2(z − b)1/2,w−(z) = −(z − a)1/2(z − b)1/2 holomorphic in the cut
plane. Many other valid cuts are also possible, and sometimes useful. AT – p.5/18



4. The logarithmic function

We have seen that f(z) = ez is an entire function which generalises the real
exponential function. For x > 0, we know that x = eln x, where g(x) = ln x is the
natural logarithm . We can ask what the “inverse function” of ez is. This question has
been treated in the Problems for the last Lecture, but we will now define an analytic,

multi-valued inverse function to the complex exponential.

If we consider the equation, z = ew, we can solve it by setting z = reiθ, w = u + iv.
Using the properties of the complex exponential, this is equivalent to the two real

equations, r = eu, θ = v. The first is easily solved and its unique solutions is u = ln r,
as expected. However, we cannot simply set v = θ, since v = θ + 2nπ also solves the
equation z = ew, for any positive or negative integer n!

Let us write the simplest solution in the form, where z = reiθ; r > 0; θ = Arg(z):

w(z) = ln r + iArg(z)

If we start at any point in the complex plane and describe a closed contour which does

not contain the origin in its interior we see that θ = Arg(z) returns to its initial value. The
function is single-valued . It is easy to show from the equation that the function is
unbounded and therefore not analytic at z = 0. Elsewhere dw

dz
= 1

z
and the function is

analytic.
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4. The logarithm: other branches

The other branches of the function are given by,

wn(z) = ln r + iArg(z) + 2nπi

where n = 0,±1, ... This function has infinitely many branches . All of them satisfy,
z = ew. What is called the Principal Branch is defined by cutting the plane along the
negative real axis from the origin to infinity and setting:

ln z = ln r + iθ (−π ≤ θ < π)

All the other branches differ from this by an integral multiple of 2πi. Note that the
principal branch reduces to the real function ln r along the real axis and suffers no
discontinuity there in the complex plane.

It is easy to demonstrate using Cauchy’s Theorem that the principal branch, as defined
above, can also be written in the form:

ln z =

Z z

1

du

u

where z 6= 0 and the integral is taken on any simple curve in the cut plane defined
above, not passing through the origin which is a branch point of infinite order.
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5. Riemann surfaces

Riemann discovered a remarkable method of making multi-valued but analytic functions
holomorphic. Let us go back to w2 = z and w±(z). In the cut plane we have seen that
each function-branch is holomorphic. Riemann had the idea of introducing two cut planes ,
C+, C− placed on top of each other so that they have the origin (and also the point at

infinity, the second branch point) in common. The lower lip of the plane C+ is connected
by an “invisible bridge” to the upper lip of C−, and the lower lip of the latter to the upper
lip of C+. This is difficult to draw but not to imagine!

Now, Riemann claims that there is one and the same analytic function, satisfying w2(z) = z

as we wind around the origin in this weird “Riemann surface”!

Starting at x > 0; y = 0; z = x, we follow the branch w+(z) = r1/2eiθ/2 along a curve
(which may as well be the circle, r = x ) counter-clockwise encircling the origin and arrive
at z = x + i(2π − ǫ), on the “lower lip” of C+, say. We will find that
w+(z) ≃ x1/2eiπ = −(x)1/2 = w−(x), as expected.

Now, following our peculiar linkages of the two cut planes, if we proceed further, we will
move on to C− and will be following w−(z) around (this is because, from the lower lip
of C+ we move continuously on to the upper lip of C−. If we make a complete cicuit
counter-clockwise, we arrive at the lower lip of C− and find that w−(z) ≃ w+(z), as it
should be. By using two sheets joined at the cuts, Riemann has united both branches into a
single holomorphic function on the Riemann surface.
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6. Other Riemann surfaces

Using similar arguments, one can show that w3(z) = z, which has three branches can
be made holomorphic on a single, three-sheeted Riemann surface where the cuts along the
positive real axis in the sheets can be linked appropriately. Naturally one has to wind
around the origin three times, each time moving on to a different sheet and follow the
function branches in turn before returning to the original sheet and value.

It is equally easy to show that if z = ew is considered, this has infinitely many sheets all
joined sequentially at the cuts along the negative real axis and one will never return to
the principal branch however many times we wind around the origin.

The beauty of the Riemann surface is, on it one may apply all the theorems on
holomorphic functions. “Crossing cuts” is possible, provided we move to the appropriate
Riemann sheet.

It must be remembered that analytic function branches may behave differently at the
“same point” z. They are of course in different sheets! Thus, the function,
f(z) = 1

1+
√

(z)
has a branch point at z = 0. One of its branches is analytic at z = 1

and has a perfectly valid Taylor series there. The other branch has a pole at that point.
We can alternatively say that the function is analytic on one Riemann sheet but has a
pole in the other. The cut in this case can be along the negative real axis.
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6. Analytic continuation

Cauchy’s integral formula tells us that if a function f(z) is holomorphic in a region, we
can expand it in a Taylor series about any point z = a in that region. This simple
observation has profound consequences, some of which will be explored.

We can ask what is the maximum extent of the disk in which the power series converges.
It follows immediately from the proof of the integral formula that “radius of convergence”
of the series must be at least as far as the distance from z = a to the contour bounding
the region of holomorphy.

It may happen that the power series has an infinite radius of convergence: this means
that the function is analytic at all finite points of the plane and is an entire function like
ez , sin z, etc. At every point within the circle of convergence, the function is analytic and
all its derivatives may be calculated. The key point is that at every such point, the
function and its derivatives can be expressed in terms of the values at z = a. Thus all

the derivatives at one point suffice to determine the function at all points of the disk.

The above discussion shows that if we know an entire function in a tiny disk in the
complex plane, we can “continue” it to the whole plane using its power series.
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7. Analytic continuation: principles

Consider the function defined by the power series,

f(z) = 1 − z + z2 − z3..

This converges for |z| < 1. We know that it represents the function 1
1+z

in this region.
Evidently, we may define the function everywhere except at the pole z = −1 by the
rational function.

Thus, the formula is an an analytic continuation of the series from inside of the unit circle to
all of the complex plane. In the same manner we may analytically continue any function
of a real variable defined by a convergent power series into the complex plane by simply
replacing x by z. Such a series will converge in some circle including the interval of
convergence of the real series.

The key point is this: given a power-series, we know that the function defined by it is
holomorphic (single-valed and analytic) at every point interior to its disk of convergence,
D0. Thus, we can find the values of the function and all its derivatives at such a point. If
we construct the Taylor-series about this new centre, the new disk of convergence, D1,
say may well extend to a region beyond D0. If this is the case, we will have succeeded in
“analytically continuing” the function to a region larger than the original disk of
convergence.
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8. Power-series: summary

Before we discuss the details of the processes and results of analytic continuation, it is
useful to recall some key results about power series :

1. Every power series, Σ∞
n=0an(z − a)n has a radius of convergence , 0 ≤ R ≤ ∞ such

that it converges absolutely and uniformly for |z − a| < R. Such a Taylor series defines
a holomorphic function of the complex variable z within its disk of convergence. Every
power series Σ∞

n=0an(z − a)n = f(z) can be differentiated or integrated within its

disk of convergence and an =
f(n)(a)

n!
; n = 0, 1, ... If R = ∞ the function is entire .

2. If Σ∞
n=0an(z − a)n; Σ∞

n=0bn(z − a)n have the same value in some neigbourhood of
z = a or even at an infinite set of points with limit point z = a, they are identical,
namely, an = bn for all n. This is called the uniqueness/identity theorem.

Regular/ordinary points of an analytic function: A point in the complex plane in the
neighbourhood of which a function is both single-valued and differentiable is called a
regular/ordinary point of the function. Thus, we have:

Definition 8.2: A single-valued function which is differentiable at a point and in a
neighbourhood of the point is said to be regular/holomorphic at the point.

It is important to remember that regularity implies not only analyticity at the point but also in a
neighbourhood of it.
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9. Singularities of analytic functions

If an analytic function is not regular at a point, the point is a singularity of the function. A
limit point of regular points, which is not itself a regular point is a singularity of the
function.

Classification of singularities: Analytic functions may have the following types of
singularities:

1. Isolated singularities (poles): If a point z = a is such that the function f(z) is
holomorphic in a disk surrounding the point, and there is an integer n > 0 such that
(z − a)nf(z) is non-zero and analytic, it is a pole of nth order.

2. Isolated essential singularities: If z = a is an isolated singularity, but it is not a pole of
finite order, it is an essential singularity.

3. Non-isolated essential singularities: Some essential singularities can "crowd together"
and may not be isolated. Examples will be given later.

4. Branch points: A function may be bounded or even differentiable at z = a but may not

be not single-valued in a disk centred at the point. Thus circuits around the point lead to
different branches (eg.

√
z, ln z ). Such functions can be made single-valued by

introducing suitable cuts and Riemann surfaces. Such singularities are called branch
points.
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10. Radius of convergence of Taylor series

We can ask, "why is not every analytic function entire?" In other words, what exactly
determines the radius of convergence Taylor series of a function? Using Cauchy’s
theorem and the simplest properties of power series, the following theorem can be
proved:

Theorem 8.1: The radius of convergence of a power series of an analytic function is
determined by the nearest singularity of the function from the centre of the disk of
convergence. Thus, every function represented by the Taylor series must have at least
one of its singularities on its circle of convergence.
Examples: 1. f(z) = 1

1+z
= 1 − z + z2 − z3.. converges for |z| < 1. The pole is at

z = −1.
2. f(z) = sin z = z − z3

3!
+ .. converges for all finite z. It has an essential singularity at

infinity.
3. f(z) = (1 − z)−1/2 = 1 + z

2
+ 1.3

2!
( z
2
)2.. converges for |z| < 1. Here z = 1 is a

branch point where the function is not even bounded.

We can compute the radius of convergence of a power series, Σ∞
n=0anzn, by studying

the behaviour of the real, non-negative sequence , |an|1/n: if Limn→∞|an|1/n = 1
R

< ∞,
the “Cauchy root test” tells us that the series converges absolutely and uniformly for,
|z| < R and diverges for |z| > R. Nothing can be said (in general) about what happens
for |z| = R. AT – p.14/18



11. General method of analytic continuation

Suppose D1 and D2 are two regions and f1(z) is holomorphic in D1 and f2(z) in
D2. Suppose D1,2 have a common region D where f1(z) = f2(z). Then, f1

represents an analytic continuation of f2 to D1 and vice versa. We thus have one
single analytic function, f(z) in D1 + D2, with f = f1; z ∈ D1 and f = f2; z ∈ D2.

Now, suppose f(z) is holomorphic in a region R bounded by a simple contour C. We
may calculate the function and all its derivatives at any interior point z = a. The Taylor
series of f(z) about z = a must converge in a circle of radius r, where r is at least
the minimum distance of a to the boundary C. If it were smaller, we could draw a
larger circle on which the function would still be analytic and using Cauchy’s integral
formula, prove that the power series must converge in the larger circle. It is interesting
that in many cases, even if the function is not entire, the power series may converge in a
circle going outside R. After all, since R was "given", it may be that the function is
actually holomorphic in some larger region and the singularity of the function nearest to
z = a may lie outside R.

If the disk of convergence extends beyond R, we will have analytically continued the
function outside it.
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12. Circle-chain continuation

Definition 8.3: If z = a is a regular point of an analytic function, the value of the function
and all its derivatives at z = a is called a function element . From it we create a disk D1(a)

of convergence of the Taylor series of the function.

We next calculate the Taylor series of the function. If the series converges in a larger
region, the function has been analytically continued to the larger region. In this way,
construct a chain of circles which maximally extend the original region.

It is easily proved from the identity theorem of power series that the analytic continuation
of a function is unique and does not depend upon the path or chains of circles used to
continue it, provided the paths do not enclose a singularity of the functi on.

The following statements can be rigorously proved: if R is a region of holomorphy and a
function element is known at one interior point of it, one can uniquely continue the function

analytically to the whole of R. If the function is entire, it can be continued to the whole
plane. If the function has isolated singularities, it can be continued by the chain of circles
method everywhere (except of course at the singularities).

If the function has branch points , analytic continuation yields, in principle, all the branches
of the function which may be made holomorphic on its Riemann surface.
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13. Results on analytic continuation

If a function can be continued by any method whatever, it can also be continued by the
general method of power series and the result will be the same. However, the power
series method merely demonstrates the existence of continuations, and is not very
practical.

There are lacunary functions which are restricted by their very nature to a sub-domain of
the complex plane (eg. the interior of the unit circle) so that they have a natural boundary

made up of essential singularities beyond which it is impossible to continue the function.
Examples of such functions are well-known, but are apparently not of interest in
applications.

Theorem 8.2: Let two regions R1, R2 be adjacent : they share a common portion of their
boundaries. Let f1(z) be holomorphic in R1 and f2(z) in R2. The two functions are
assumed to be continuous up to the common boundary and are equal along it. The
combined function is holomorphic in R1 + R2.

Proof: If C is any closed curve entirely contained within R1 (or R2), it is clear that the
integral of the combined function around the curve will vanish. If the curve intersects the
common boundary, we can always introduce "cross-cuts" on either side of the common
portion intercepted by the curve. Since the two functions are equal along the portion
intercepted, the whole integral splits into two integrals, each of which is separately zero.
Then, Morera’s Theorem gives the required result. AT – p.17/18



14. The reflection principle

Theorem 8.3: (”Principle of reflection”) Suppose f(z) is holomorphic in a region R

intersected by the real axis. Let f(z) be real on the real axis. Then, f(z) takes conjugate
values for conjugate values of z.

Proof: We consider a point z = a interior to R on the real axis. We know that f(z)

has a Taylor expansion about z = a valid in some neighbourhood interior to R. Since
f(z) is real on the real axis, its value and and those of its derivatives at a must be real.
Thus all the Taylor coefficients are real. If we substitute z̄ − a, in the series, we see that
the function must take conjugate values. Thus the result is proved in the disk of
convergence. By analytic continuation we can extend it to all of the region, since the
power series at conjugate points will have conjugate values.
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