
Chennai Mathematical Institute
B.Sc Physics

Mathematical methods
Lecture 7: Complex analysis: holomorphic

functions

A Thyagaraja

January, 2009

AT – p.1/18



1. Deductions from Cauchy’s Theorem

Definition 7.1: An analytic function which is single-valued in a simply connected region of
the complex plane is called holomorphic .

Many of the functions we have seen (eg. polynomials, ez , rational functions and
analytic functions defined by absolutely convergent power series) are holomorphic in
suitable regions. Many important functions (eg. solutions of the equations
w2 = z; z df

dz
= 1) are not single-valued, although analytic. We will consider them later,

after we have explored the holomorphic functions in some detail.

One of the most remarkable consequences of Cauchy’s formula is that if a function is
analytic in a region, all its derivatives are analytic too! This is usually not the case with
functions of a real variable. Thus, there are real functions f(x) with everywhere
continuous derivatives, but no second derivatives.

Another consequence is a converse of Cauchy’s integral theorem 6.1 due to Morera . This
result is useful in proving some facts about infinite series of analytic functions.
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2. Morera’s Theorem

Theorem 7.1: (Morera) Let f(z) be single-valued and continuous in a region R. If
H

C f(z)dz

is zero when C is any simple closed contour C entirely within R, then f(z) is holomorphic

in R.

Proof: We already know that if the integral around arbitrary closed contours is zero, we
may define, F (z) =

R

C(z0,z) f(u)du, where C is an arbitrary contour lying within R

and joining z0, z ∈ R and this is single-valued in R. Furthermore, we know that F (z)

is analytic and dF
dz

= f(z) in R. It follows therefore that f(z) is itself analytic in
R-QED.

Theorem 7.2: Let fj(z); j = 1, .. be any sequence of holomorphic functions in R. Suppose
that that the series, Σ∞

j=1fj(z) is uniformly convergent in R. Then, its sum, F (z) is
holomorphic in R and may be differentiated term-by-term: F ′(z) = Σ∞

j=1f ′(z).

Proof: Since the series converges uniformly, we may integrate term-by-term to obtain the
integral of F around any closed contour from the sum of the integrals. Since the fj are
holomorphic by assumption, it follows that F (z) satisfies the conditions of Morera’s
Theorem 7.1, and hence it is holomorphic and may therefore be differentiated
term-by-term. Note that we infer a differentiability property here from an integral relation.
This theorem has an important corollary called Weierstrass’ Double-series Theorem .
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3. Infinite series: Laurent-Taylor

Theorem 7.3: (Weierstrass): If each term fj(z) in Theorem 7.2 is of the form of a
convergent power series, fj = Σ∞

n=0anj(z − z0)n, and if F = Σ∞
n=0Fn(z − z0)n, then,

Fn = Σ∞
j=1anj . The proof is a simple deduction from Th. 7.2.

The following theorem due to Laurent is extremely important and demonstrates the
connection between power series and holomorphic functions.

Theorem 7.4: (Laurent-Taylor) Let f(z) be a holomorphic function in the annulus,
r1 ≤ |z| ≤ r2. Then, f(z) may be expanded in a Laurent series :

f(z) = Σ∞
n=0anzn + Σ∞

n=1

bn

zn
(1)

an =
1

2πi

I

|u|=r2

f(u)du

un+1

bn =
1

2πi

I

|u|=r1

f(u)un−1du

Proof: Using the Cauchy integral formula, we have,

f(z) =

I

|u|=r2

f(u)du

u − z
−

I

|u|=r1

f(u)du

u − z
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3. Laurent’s Theorem: proof (contd.)

Within |u| = r2, |z| < r2. Hence, we may expand 1
u−z

in the first integral in a
geometric series which is absolutely and uniformly convergent in powers of z

u
. Outside

|u| = r1, |z| > r1, so that we can similarly expand this function in the second integral in
powers of u

z
obtaining the result:

f(z) =

I

|u|=r2

f(u)
h

Σ∞
n=0(

z

u
)n

i du

u

+

I

|u|=r1

f(u)
h

Σ∞
n=0(

u

z
)n

i du

z

= Σ∞
n=0zn

I

|u|=r2

f(u)
du

un+1

+Σ∞
n=1

1

zn

I

|u|=r1

f(u)un−1du

This proves the Theorem. If f(z) is analytic everywhere within |z| = r2, r1 = 0 and all
the bn’s vanish. We then have Taylor’s Theorem for a function of a complex variable. Of
course, the theorems are valid whatever the centre of the two circles is. If the centre is at
z = a, we simply replace z in the series by z − a and 1

u
→ 1

u−a
in the integral

formulas for the coefficients.
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3. Laurent-Taylor Theorem: corollaries

Corollary 1: The series of positive powers (“Taylor series”) converges everywhere within
the circle |z| = r2 and represents a holomorphic function there. The series of negative
powers converge everywhere outside the circle |z| = r1 and represents a holomorphic
function there. Furthermore, it tends to zero at infinity.

Corollary 2: Thus, using Eq.(3), Lecture 6 (Cauchy’s formula for dnf
dzn ) , we may write,

when f(z) is holomorphic everywhere in a circle C of radius R and centre z = a,

f(z) = a0 + a1(z − a) + a2(z − a)2 + ..

= f(a) +
f (1)(a)

1!
(z − a) +

f (2)(a)

2!
(z − a)2 + ..

f (n)(a)

n!
=

1

2πi

I

C

f(u)du

(u − a)n+1
= an

This Taylor series converges absolutely and uniformly for |z − a| < R.

Corollary 3: “Cauchy’s inequality” If |f(z)| < M on C,

|f (n)(a)| ≤ n!
M

Rn

These follow from the formulas for the coefficients. This inequality bounds the derivatives

of f(z) in terms of the bound on the function -a remarkable property of analytic functions.AT – p.6/18



4. Analytic functions: isolated singularities

Definition 7.2: A point in the complex plane where f(z) is holomorphic (ie analytic and
single-valued) is called an ordinary point .

Remark: If z = a is an ordinary point of f(z), there exists a circle C with centre z = a

and radius ρ > 0 such that f(z) is single-valued and differentiable for |z − a| < ρ.
Every function may be expanded in a Taylor series about an ordinary point, and the
expansion is absolutely and uniformly convergent in the ρ-neighbourhood of the point.
Note that analyticity always refers to an open set (here a disk), not just to a single point.

Definition 7.3: A point in the complex plane where a function ceases to be analytic (ie its
derivative does not exist) is called a singular point or singularity of the function. If z = a is a
singular point of f(z) such that there is a disk of radius ρ > 0 where the function is
holomorphic except at z − a is called an isolated singularity of the function.

Examples:

1. Every point in the finite complex plane is an ordinary point of f(z) = ez .

2. The function f(z) = 1
z

has an isolated singularity at z = 0.

3. The function f(z) = 1
1+z2

has two isolated singularities at z = ±i.
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5. Laurent series at isolated singularities

We can check the behaviour of f(z) at the "point at infinity" by making the substitution,
u = 1

z
and considering the nature of the function at u = 0. Thus every non-constant

polynomial has an isolated singularity at "infinity". Similarly, we see that the point at
infinity is an ordinary point of f(z) = 1

1+z2
.

Laurent’s Theorem has an important special case: the “inner circle” can actually shrink
to a point, so that z = a becomes an isolated singularity of the function. This is stated
in the next result. Here Cr is any circle centred at z = a with radius 0 < r < ρ and
M(r) is the maximum value of |f(z)| on Cr .

Theorem 7.5 : Let f(z) be analytic (and single-valued) on and within a circle C of radius ρ

centred about z = a except at a. Then the function may be expanded in a Laurent series
expansion valid for 0 < |z − a| < ρ:

f(z) = Σ∞
n=−∞cn(z − a)n

cn =
1

2πi

I

Cr

f(u)du

(u − a)n+1

|cn| ≤
M(r)

rn

In general, the coefficients cn cannot be expressed in terms of the derivatives of f(z) at
z = a, since it is not analytic there. AT – p.8/18



6. Poles and essential singularities

There is some standard terminology associated with Laurent and Taylor expansions.
Thus the analytic part of the expansion (series of non-negative powers of z − a ) is called
the regular part while the series of negative powers is defined as the principal part .

If f(z) has a Laurent expansion in 0 < |z − a| < ρ, and its principal part vanishes
identically (ie all the coefficients of negative powers are zero) then the function is said to
have a removable singularity at z = a. It can be made analytic at z = a by defining

f(a) = Limz→af(z). Its regular part then becomes its Taylor series which converges for
|z − a| < ρ. A typical example is the function, f(z) = ez−1

z
, defined for |z| > 0. Since

the function is not even defined at z = 0, it is a singular point. However, the function
has a definite Taylor expansion about the origin: f(z) = 1 + z

2!
+ ... Thus defining

f(0) = Limz→0 = 1, we can remove the singularity! Removable singularities are of no
interest.

Definition 7.3: If z = a is an isolated singularity of the holomorphic function f(z) defined
as in Laurent’s Theorem 7.5, and if only a finite number of the coefficients cn belonging to
the principal part are non-vanishing , the singularity is called a pole . If an infinite number of
cn’s are non-vanishing for n < 0, the singularity is called an essential singularity .
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6. Poles, essential singularities: contd.

Ex. 1: The function e1/z is holomorphic for |z| > 0. It has an essential singularity at
z = 0.
Ex. 2: The function f(z) = 1

z2−1
has poles at z = ±1.

Ex. 3: The function f(z) = e(z+1/z) has essential singularities at z = 0; z = ∞.
Ex. 4: The function f(z) = ez

1−z
has a pole at z = 1 and an essential singularity at

infinity.

Definition 7.4: If z = a is an isolated singularity of the holomorphic function f(z) defined
as in Laurent’s Theorem 7.5, the coefficient c−1 is called the residue of the function at
z = a. It is given by the formula,

c−1 =
1

2πi

I

Γ
f(u)du

where Γ is any simple closed contour lying entirely within |z − a| = ρ and containing
z = a within it. In particular, we may take Γ to be a circle centred on the singularity with
any radius less than ρ.

The concept of the residue of a holomorphic function at an isolated singularity leads to
an extremely powerful application of Cauchy’s Theorem.
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7. Cauchy’s Residue Theorem

Theorem 7.6: Let f(z) be holomorphic in a region R and let C be a simple closed contour
in R which contains within its interior a finite number of isolated singular points,
ai; i = 1, .., n at which the function has residues, ri. Then,

I

C
f(z)dz = 2πiΣn

i=1ri (2)

Proof: This follows from applying Cauchy’s Theorem to the multiply connected region
defined by the interior of the region enclosed by C and the exterior of "small" disks
surrounding the n isolated singularities at z = ai. Cauchy’s theorem states that
H

C f(z)dz − Σn
i=1

H

ci
f(z)dz = 0, where the ci are the circumferences of the small

circles centred at ai. From Laurent’s Theorem these integrals are precisely respectively
equal to 2πiri, where ri are the residues at these points. Thus Cauchy’s Residue Theorem

is established.

Example 1: The function f(z) = 1
z

has a pole at z = 0 with residue

r = 1 →
H

C
dz
z

= 2πi, where C is any simple closed contour around the origin. If the
origin lies outside the region enclosed by C, by Cauchy’s Theorem, the integral vanishes!
Example 2: The function f(z) = e1/z has an essential singularity at z = 0 where its
residue c−1 = 1.
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8. Behaviour near isolated singularities

If the isolated singularity of f(z) at z = a happens to be a pole , the Laurent series
around z = a must have the form,

f(z) = φ(z) +
c−1

z − a
+ .. +

c−m

(z − a)m

where φ(z) is analytic at z = a and m > 0 is a positive integer. The pole is said to
be of order m. Consider (z − a)mf(z) = F (z). Obviously, this function is analytic at
the pole and F (a) = c−m 6= 0. Clearly, we have the formula,

c−1 = Limz→a
1

(m − 1)!

dm−1

dzm−1
[(z − a)mf(z)]

Laurent series near isolated singularities of a holomorphic functions can be used to
discuss their behaviour. Suppose f(z) has a pole of order m at z = a. Then its principal

part may be written as,

fp(z) =
c−1

(z − a)
+ .. +

c−m

(z − a)m

where c−m 6= 0. Evidently, by choosing z sufficiently close to the pole, we see that

|f(z)| ≃
|c−m|

|z−a|m
. This "blowing-up" behaviour is typical of poles, in the vicinity of which an

analytic function is single-valued, but unbounded.
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9. Uniqueness of Laurent-Taylor series

The behaviour of an analytic function near an essential singularity which can be isolated or
not is much more subtle. It can be shown quite simply (Weierstrass’ Theorem ) that in the
neighbourhood of an essential singularity, an analytic function approaches any given value

arbitrarily closely. Indeed, it was proved by Picard that near an essential singularity an
analytic function actually assumes every value with the possible exception of one . For example,
the function f(z) = e1/z has an essential singularity at the origin. It assumes every
value in the neighbourhood of the origin except f(z) = 0.

Uniqueness of the Laurent expansion: If we have obtained, in any manner the formula,

f(z) = Σ∞
n=−∞cn(z − a)n, (R′ < |z − a| < R)

The series is necessarily identical with its Laurent series. Thus, we consider a circle
Γ : |z − a| = ρ; R′ < ρ < R. From uniform convergence, the Laurent coefficients are:

dn =
1

2πi

I

Γ

f(z)dz

(z − a)n+1

= Σ∞
m=−∞

cm

2πi

I

Γ

(z − a)mdz

(z − a)n+1

= cn Q.E.D
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10. Liouville’s Theorem

It might be imagined that there might be bounded functions which are analytic everywhere .
The following theorem due to Liouville shows that only constants can be analytic
everywhere and be bounded.

Theorem 7.7: (Liouville) If f(z) is analytic at every point of the complex plane and is also
bounded, it must be a constant.

Proof: We have, from Cauchy’s integral formula,

|f ′(z)| = |
1

2πi

I

Cρ

f(u)du

(u − z)2
|

≤
M

ρ
(1 −

|z|

ρ
)−2

where Cρ is a circle centred at the origin, with an arbitrarily large radius ρ > |z|. By
hypothesis, we have, for all z, |f(z)| < M . Making ρ → ∞, we see that f ′(z) = 0, for
any z. Thus f(z) must be a constant.

This theorem can be used to prove the Fundamental Theorem of Algebra which states that
every non-constant polynomial P (z) has at least one zero z = a such that P (a) = 0.
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11. Liouville’s Theorem: applications

Theorem 7.8: If P (z) is a non-constant polynomial, there exists a complex number a such
that P (a) = 0.

Proof: Suppose there is no such a, so that P (z) 6= 0 for any z. Consider the rational
function, g(z) = 1

P (z)
. Since P (z) never vanishes, g(z) must be bounded. It is

non-constant and clearly differentiable everywhere, since g′(z) = −
P ′(z)

P2(z)
, which is

also finite everywhere. Hence, by Liouville’s Theorem g(z) must be constant, which
contradicts the fact that P (z) is assumed to be non-constant! Hence, P (z) must have
at least one zero. Later we will give another proof which will show that if the degree of
the polynomial is n, then it must have n zeros (including multiple zeros).

Definition 7.5: Let f(z) be holomorphic in R. If z = a is a point such that f(a) = 0, it is a
zero of the function. Suppose the Taylor series of f(z) near z = a is of the form,

f(z) = am(z − a)m + am+1(z − a)m+1 + ..

then, z = a is said to be a zero of order m ≥ 1. At such a zero,
f(a) = f1(a) = .. = fm−1(a) = 0 and, fm(a) 6= 0.
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12. Zeros of analytic functions

Theorem 7.9: Zeros of analytic functions are isolated points. Thus if f(z) is holomorphic
and not identically zero around z = a, then, there is a disk D : 0 ≤ |z − a| < ρ; ρ > 0

such that f(z) 6= 0, except possibly at z = a.

Proof: Without loss of generality, we may assume the zero is at the origin: a = 0. Then,

f(z) = a0 + a1z + a2z2 + .. (Taylor − series)

It converges in some disk, 0 ≤ |z| < r; r > 0. If not all the coefficients are zero, there
must be a first non-zero one, am; m ≥ 1, say. Then,

f(z) = amzm + am+1zm+1 + .., (|z| < r)

Now, if 0 < r1 < r, the series converges for |z| ≤ r1 and |an|rn
1 → 0; hence it is

bounded, by K say. Then we have,

|f(z)| ≥ |z|m

"

|am| −
K|z|

rm+1
1

−
K|z|2

rm+2
1

− ..

#

≥ |z|m
»

|am| −
K|z|

rm
1 (r1 − |z|)

–

Choosing ρ > 0 sufficiently small, and using, |z| < ρ < r1, we can make the RHS
positive in 0 < |z| < ρ. Hence the zero must be isolated.
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13. Argument principle of Cauchy

Alternate form of Th. 7.9: If f(z) is holomorphic in a region R and z1, z2, z3, .. are a set of
points having a limit point z∗ in R, and f(zi) = 0 at every zi, then f(z) = 0 for all z in R.

Corollary 1 (Th. 7.9): If f(z) is holomorphic in a region and vainshes in any sub region or
along any arc of a continuous curve or at an infinity of points with a limit point in the
region, it must vanish identically.

Corollary 2 (Th. 7.9): If two analytic functions are equal at an infinity of points in their
common region of analyticity, they must be equal throughout the region.

We can use the Residue Theorem of Cauchy to “count” the number of zeros and poles of
any holomorphic function in a compact region. This is called the “argument Principle”
and is a very important result: we find that a contour integral can count the zeros and
poles!

Theorem 7.10: Let f(z) be holomorphic on and within a simple closed contour C, apart
from a finite number of poles, and f(z) is not zero on the contour, and let NZ be the
number of zeros and NP the number of poles inside the countour, counted with the
appropriate multiplicities . Then:

NZ − NP =
1

2πi

I

C

f ′(z)

f(z)
dz (3)
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14. Proof of the argument principle

Proof: We apply the Residue Theorem to the holomorphic function f ′(z)
f(z)

which has poles

at the zeros of f(z) and also at those of f ′(z) which are located at the poles of f itself.
Thus,

1

2πi

I

C

f ′(z)

f(z)
dz = ΣiRi + ΣjSj

where Ri are the residues of f ′

f
at the zeros of f and Sj are the residues at the

poles of f . Note that both are finite sums. If z = zi is a zero of f of order m,
f(z) = am(z − zi)

m + .., f ′ = mam(z − zi)
m−1, in the immediate neigbourhood of the

point. Hence, Ri = m. In the case of zj being a pole of order n

f(z) = a−n(z − z−n
j + .., f ′(z) = −na−n(z − zj)

−n−1 in its neighbourhood and
Sj = −n. Applying this to the finite sets of zeros and poles, we get the required result.

Cor: Let Pn(z) = zn + b1zn−1 + b2zn−2 + .. + bn. Then Pn(z) has precisely n complex
zeros (including multiplicity).

Proof: Consider P ′(z)
P (z)

integrated on a circle of very large radius. The integral in the

argument principle equals n for a sufficiently large circle (show this explicitly!). Since
P ′(z) is analytic for all z (why?), NP = 0. Hence, NZ = n.This gives a bit more
information on the zeros of polynomials than Liouville’s Theorem.
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