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1. Cauchy’s Theorem

Theorem 6.1: Let R be a simply connected open region of the complex plane and let
f(z) = u(x, y) + iv(x, y) be an (single-valued) analytic function of z = x + iy in this
region. Let C be any simple, closed contour lying entirely within R. Then, the following
integral relation holds:

I

C

f(z)dz =

I

C(s)

»

u
dx

ds
− v

dy

ds

–

ds + i

I

C(s)

»

u
dy

ds
+ v

dx

ds

–

ds

= 0 (1)

Remarks: The theorem states that the contour integral of an analytic function taken
around a closed contour lying entirely within a simply connected region of analyticity
always vanishes. This means that both the real and imaginary parts of the integral must
separately vanish. Virtually every important result in Complex Analysis depends, in one
way or another, upon this fundamental theorem.

The notation, C(s) means the contour is parametrized by s, where
0 ≤ s ≤ LC ; C : (x(s), y(s)), LC being the length of the curve. We always mean closed
curves of finite total length in this context.
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1. Cauchy’s Theorem: special cases

Before giving one of the simpler proofs of this theorem, let us consider two easy cases: if
f(z) = c, where c is an arbitrary, complex constant, we evidently verify the theorem

since,
H

C(s)
dx
ds

ds =
H

C(s)
dy
ds

ds = 0. This is evidently a consequence of the fact that for

a closed contour, x(0) = x(LC); y(0) = y(LC).

Let us consider f(z) = kz, where k is an arbitrary complex constant. Now,
H

C
f(z)dz

can be written as,
H

C
k
2

d
dz

(z2) dz
ds

ds. It is evident that this too must vanish, since z2 is
periodic as we go round the contour and returns to its initial value when we traverse the
whole contour. The same argument can be applied to any polynomial in z in any finite sub

region of the complex plane .

If f(z) is expressed as a uniformly convergent power series in R, by using integration
theorems, we can verify Cauchy’s theorem for the function since the contour integral for
each term of the series must vanish by the above argument. Since the series is
assumed uniformly convergent, the result applies to its sum.

We next consider some simple contours where we can verify the theorem rather easily.
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2. Cauchy’s Theorem: “proofs”

A rigorous proof is beyond the scope of this course, but I shall indicate the lines such a
proof might take. We need the idea of an “exact differential”.

Definition 6.1: Let R be a simply connected region of the x, y plane. Let P (x, y), Q(x, y)

be two real continuously differentiable functions in R. The expression,
P (x, y)dx + Q(x, y)dy is said to be an exact differential if there exists a single-valued real
function F (x, y) which is continuously twice differentiable in R such that,
P (x, y) = ∂F

∂x
; Q(x, y) = ∂F

∂y
in R, and hence,

Pdx + Qdy = Fxdx + Fydy = dF

The following simple theorem is an immediate consequence of the above definition.

Theorem 6.2: If P (x, y)dx + Q(x, y)dy in R (as defined above) is an exact differential,
then if C(s) is an arbitrary simple, closed contour lying in R,

I

C(s)

»

P
dx

ds
+ Q

dy

ds

–

ds =

I

C(s)

dF

ds
ds

= 0
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2. Cauchy’s Theorem: exact differentials

A 2-d vector field (P (x, y), Q(x, y)) associated with an exact differential is known in
Physics as a “conservative field” and is said to be derivable from the potential , F (x, y).
Clearly, a necessary condition for this is,

∂2F

∂x∂y
=

∂2F

∂y∂x

But this means that we must have, if Pdx + Qdy is an exact differential, the equality
holds:

∂P

∂y
=

∂Q

∂x

It is remarkable that this is also a sufficient condition for the expression to be an exact
differential! This is a purely “real variable” theorem proved in advanced calculus/vector
analysis. We shall simply assume it to be true and deduce Cauchy’s “complex integral
theorem” from it.

You should be aware that rigorously proving the sufficiency of the exact differential
condition is really equivalent to proving Cauchy’s Theorem.
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3. Proof A of Cauchy’s Theorem

If f(z) = u(x, y) + iv(x, y) is analytic in R, then the differentials,

u(x, y)dx − v(x, y)dy

v(x, y)dx + u(x, y)dy

are both exact . This follows by applying the sufficient condition which requires the
relations, uy = −vx; vy = ux. These are the Cauchy-Riemann equations , which themselves
result from the assumed analyticity of f(z) in R. Then, it follows from Theorem 6.2 that,

I

C(s)

»

u
dx

ds
− v

dy

ds

–

ds = 0

I

C

»

v
dx

ds
+ u

dy

ds

–

ds = 0

These are equivalent to Cauchy’s Integral Theorem, 6.1- Q.E.D.

I shall present a more general approach based on Green’s Theorem in 2-d.
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3. Proof B: via Green’s formula

Theorem 6.3 (Green’s formula): If (P (x, y), Q(x, y)) is a 2-d vector field defined and
continuously differentiable in R, Green’s Theorem (in the plane, also related to Stokes’

Theorem of vector analysis) states that, for any simple closed contour C(s) in R enclosing
(by virtue of Jordan’s Theorem!) a domain D, the following integral formula which links
the contour integral with the double integral over the enclosed domain holds:

I

C(s)

»

P
dx

ds
+ Q

dy

ds

–

ds =

Z Z

D

»

∂Q

∂x
−

∂P

∂y

–

dxdy

Proof B of Cauchy’s Theorem 6.1: We apply the above formula to the real and imaginary
parts in Eq.(1) of Theorem 6.1:

I

C(s)

»

u
dx

ds
− v

dy

ds

–

ds = −

Z Z

D

»

∂v

∂x
+

∂u

∂y

–

dxdy

I

C(s)

»

u
dy

ds
+ v

dx

ds

–

ds =

Z Z

D

»

∂u

∂x
−

∂v

∂y

–

dxdy

Evidently, thanks to the C-R equations, the integrands of both the double integrals
vanish identically. We have thus deduced Cauchy’s Theorem as a corollary of Green’s
Theorem.
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4. Corollaries and extensions

We have restricted the region to simply connected ones. What about regions which have
“holes” as shown in the Figure in the next page? To see how this is handled, consider the
region R which is simply connected and contains within it the unit disk. We now consider
the region D which is what remains in R after removing the interior of the unit disk. If
f(z) is given to be analytic in D, what can we say about contour integrals in D?

The answer depends upon whether the contour encircles the unit circle U (which is one
of the boundaries of D) or not. If C does not contain U within it, Cauchy’s integral of
f round C vanishes. In general, if C encloses the unit circle, the Cauchy integral will
not vanish, as shown by the following example.

Example: Consider the function, f(z) = 1/z in the region, D = |z| > 0, the whole
complex plane with the origin removed. This function is analytic at every point in D

which is not simply connected . Clearly, it is not analytic at z = 0. Consider C(ρ), a circle
with centre z = 0 and radius ρ > 0. This lies entirely within D but “encircles” the origin.
We find, independently of the value of ρ the result:

I

C(ρ)

dz

z
=

Z 2π

0
(

1

ρeiθ
)ρeiθidθ

= 2πi
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4. Cauchy’s Theorem in “annular regions”

x

y

R

U

f(z) is analytic in D=R−U

A

Contour A does not enclose the unit disk U 

C

Contour C encircles U

Contour integral round A of f(z) vanishes

Contour integral of f(z) around C may not

Cauchy’s Theorem in multiply connected regions
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4. Corollaries and extensions-2

The rule then is: if the contour C contained wholly within a multiply connected region R

bounds a simply connected subregion, the Cauchy integral will vanish, but not necessarily

otherwise . In the previous example, f(z) = 1/z fails to be analytic at z = 0.

If, for example, we had taken f(z) = z, which is analytic at the “excluded point”, the
integral would have vanished.

We should also be careful about inferring analyticity of functions simply from the fact that
particular contour integrals of them happen to vanish. Here is an example: consider
f(z) = 1

z2
in |z| > 0. Clearly, this is not analytic at the origin. Let us evaluate its

contour integral on the circle, C(ρ):

I

C(ρ)

dz

z2
=

Z 2π

0

ρidθeiθ

ρ2e2iθ

=
i

ρ

Z 2π

0
(cos θ − i sin θ)dθ

= 0

In this case, the vanishing of the contour integrals, indeed around any closed contour in
the region excluding the origin does not allow us to conclude anything about the
analyticity of the function at the origin .
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4. Cauchy’s Theorem in “annular regions”

C

C

1

2

C -outer closed contour1

2C  -inner closed contourR

E

I

D-domain of analyticity of f(z) =E+R

R-annular region between contours

I-interior of set bounded by inner contour,

f(z) is not necessarily analytic in I!

K

K-"cross cut"

Corollary: If R is an annular region bounded by two simple closed contours C1, C2 and the
function f(z) is analytic on these contours and within R , irrespective of whether or not it
is analytic in the region (“hole”) enclosed by C2, then:

I

C1

f(z)dz =

I

C2

f(z)dz

All closed contour integrals are usually taken counter-clockwise so that the region
enclosed always lies to the left of the tangent vector at any point on the contour. AT – p.11/17



4. Path independence of contour integrals

Theorem 6.4: If f(z) is analytic in a region R ( not necessarily simply connected) and
C1, C2 are two non-self-intersecting contours in R connecting the terminii z1, z2 ( also in
R ) such that they enclose a simply connected subregion D where f is analytic
everywhere, the following equation holds:

Z

C1(z1;z2)
f(z)dz =

Z

C2(z1;z2)
f(z)dz

Proof: Clearly, the simply connected region D is bounded by C1 + C2, the latter being
traversed from z2 to z1; denote this by −C2. Then, by Cauchy’s theorem we have,

I

C1−C2

f(z)dz = 0 → the result.

This means that where a function f(z) is analytic we may integrate it between any two
points, choosing any convenient contour joining the points and get the same result subject to
the important condition is that when we “deform the contour”, we stay within the (simply
connected) region of analyticity.

Thus, for a fixed “lower limit” z1, a contour integral of an analytic function in a simply
connected region defines a single-valued function of the upper limit z2!
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4. Integrating analytic functions

x

y

z

z

1

C

C2

1

2

Illustrating path independence

f(z) is analytic in whole region R

This deduction from Cauchy’s Theorem enables us to define analytic functions using
definite integrals by integrating a given analytic function from some initial point z0 to a
point z along any suitable smooth curve joining them, lying entirely within the region of
analyticity. If this region is not simply connected , the integral will exist but may not be
single-valued.
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5. Integrals of analytic functions

In Lecture 3 I stated the real variable result: the “Fundamental theorem of integral
calculus” of Newton and Leibniz which asserts that d

dx
(
R x

a
g(u)du) = g(x). The following

theorem states that the line integral of an analytic function f(z) defined in the previous
Section, gives s single-valued function which is actually analytic, with derivative, f(z).

Theorem 6.5: If f(z) is analytic in R and F (z) =
R z

a
f(u)du taken on any convenient

contour in the simply connected region R, then F (z) is analytic in R, F (a) = 0, and
satisfies,

dF

dz
= f(z)

Proof: Clearly we have,

F (z + ∆z) − F (z)

∆z
=

R z+∆z
a

f(u)du −
R z

a
f(u)du

∆z

=

R z+∆z
z

f(u)du

∆z

= f(z) +

Z z+∆z

z

(f(u) − f(z))

∆z
du

As ∆z → 0, the integral on the RHS tends to zero (since f(z) is analytic and therefore
continuous), and the result follows.

AT – p.14/17



6. Cauchy’s integral formula

We now give a very powerful representation for analytic functions based on the
properties of 1/z and Cauchy’s Theorem 6.1.

Theorem 6.6: Let C be a simple closed contour within a region R where a function f(z) is
analytic and let a be an interior point of the simply connected sub-region bounded by C.
Then the following integral formula holds:

f(a) =
1

2πi

I

C

f(z)dz

z − a
(2)

x

y C

z=a

γ

Cauchy Integral Representation
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7. Proof of Cauchy’s formula

Proof: The function, f(z)
z−a

is an analytic function of z within C, except at a. Let us
suppose that γ(a; ρ) is a circle of arbitrarily small radius, ρ with centre a. From
Cauchy’s theorem and the analyticity of the function in the annular region bounded by
C, γ(a; ρ), we have the identity,

I

C

f(z)dz

z − a
=

I

γ(a;ρ)

f(z)dz

z − a

From the fact that f(z) is analytic, and therefore continuous, we may, given ǫ > 0

arbitrarily small, assume ρ to be sufficiently small as to imply that, |f(a) − f(z)| < ǫ on
γ(a; ρ).Then,

I

C

f(z)dz

z − a
= f(a)

I

γ(a;ρ)

dz

z − a
+

I

γ(a;ρ)

f(z) − f(a)

z − a
dz

This first term, as I have previously shown (see Section 4), equals 2πif(a). The
second is in absolute value less than, ǫ

ρ
2πρ = 2πǫ. Hence,

|

I

C

f(ζ)dζ

ζ − a
− 2πif(a)|| < 2πǫ

Since the LHS is independent of ǫ, it must vanish. We have therefore established
Cauchy’s integral formula. AT – p.16/17



8. Consequences of Cauchy’s formula

Cauchy’s formula Eq.(2) is very remarkable because it says that knowing the values of
an analytic function f(z) on the contour C enables us to calculate its value at every

interior point a! In other words, the values of an analytic function in the interior of a simply

connected region bounded by a simple closed contour on which it is analytic are determined by its

values on the boundary .

We change the notation slightly and use z in place of a and u in the itegrand, as it is
after all a “dummy” integration variable. The next Theorem shows that an analytic
function is “infinitely differentiable”!

Theorem 6.7: Under the conditions when the Cauchy integral representation (ie Eq.(2)) is
valid, f(z) may be differentiated arbitrarily many times at an interior point z and all its
derivatives are analytic in R. In fact, we have the formula n = 1, 2, ..:

dnf

dzn
=

n!

2πi

I

C

f(u)du

(u − z)n+1
(3)

Proof: This is by induction. Starting with f(z) = 1
2πi

H f(u)du

(u−z)
(namely, Eq.(2) re-written),

differentiate both sides with respect to z. This can be easily justified, because the
integrand is continuously differentiable with respect to z, which does not lie on C.
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