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1. Introduction: examples

Definition 4.1: Let R be a connected region of the complex plane. If for every z ∈ R a unique

complex number w(z) is assigned, then w(z) is called a function of the complex variable z

defined on the domain R.

Strictly speaking , w(z) is the value of the function at z. It is the rule of assignment which is
called the function. It is traditional to denote a function by its values.

Examples:

1. If R is the whole complex plane, the following are functions in the above sense:
w(z) = 1; w(z) = z; w(z) = Re(z); w(z) = Im(z); w(z) = z̄ Note that a real number is
also regarded as a complex number!
2. Functions need not be given by simple analytical formulae: thus, w(z) = 1 for |z| > 1

and w(z) = −z for |z| ≤ 1 is a perfectly well-defined function.
3. Any polynomial in z with complex coefficients: w(z) = a0 + a1z + a2z2 + .. + anzn

4. Often we may require R to be a connected open set but not simply connected : thus
consider w(z) = 1/z; z 6= 0. This function "blows up" near the origin but is well-defined
everywhere else, including "infinity" (where it goes to zero). The region |z| 6= 0 is an
open subset of the complex plane; it is obviously connected, but is not simply connected

as paths connecting two points including the origin in their interior cannot be
continuously deformed into each other without passing through the excluded point.
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1. Introduction: continuous functions

Example 5. The class of functions w(z) =
Pn(z)
Qm(z)

where Pn(z), Pm(z) are polynomials

of degree n, m respectively; the region of definition of such rational functions is the whole
complex plane except possibly the places (finite, as will be proved later) where the
denominator vanishes.
The most general types of functions of complex variables are not very useful in
applications. We want them to be at least continuous . The following definition tells us
how continuity is to be interpreted for functions of a complex variable.

Definition 4.2: A function f(z) defined in a region R is said to be continuous at a point
z0 ∈ R if and only if Limz→z0

f(z) = f(z0) when z tends to z0 in any manner whatsoever .
Equivalently, given ǫ > 0 arbitrarily small, if we can find a δ(ǫ, z0) > 0 such that,
|f(z) − f(z0)| < ǫ for all z satisfying, |z − z0| < δ, f(z) is continuous at z0. We say that
a function is continuous in a set (which may be all of R) if it is continuous at every point of
the set.

It is important to remember that sequences in the complex plane "approach" their limit in
many more ways than on the real axis. For a function to be continuous , it must firstly be
defined at the point in question and every sequence z1, z2, .. tending to the limit z must
be mapped into a convergent sequence, f(z1), f(z2), .. with limit f(z).
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1. Continuous functions: examples

Examples:

1. w(z) = c, where c is a constant is continuous, as is w(z) = z.
2. The function f(0) = 0; f(z) = 1/z, |z| > 0 is defined everywhere and continuous at
every point except at z = 0.
3. w(z) = |z| is continuous for all finite z.
4. Consider the function, w(z) = az+b

cz+d
where a, b, c, d are complex numbers such that

ad − bc 6= 0. This is defined at all points of the complex plane (including z = ∞ ),
except at z = zs; czs + d = 0. It is continuous at every point where it is defined.

We require functions of complex variables to have a unique value at every point they are
defined. Later, we will encounter "multi-valued" functions which are really different
branches of a function. They will require a separate discussion.

Continuous functions of a complex variable defined over suitable regions possess many
desirable properties, just like continuous functions (real or complex) of real variables.
The next theorem is very important and should be learned. As usual, the proofs will be
omitted as they depend upon quite subtle results of analysis.
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2. Disks, limit points, open and closed sets

In the complex plane, the analogue of closed and bounded intervals are disks . Recall that a
disk centred at c having radius r is the set, |z − c| ≤ r. I draw your attention to some
basic geometric facts and nomenclature.

Definition 4.3: If S is any set of complex numbers, a limit point zL of the set is a point (which
need not belong to the set) such that every disk centred at zL contains at least one point
of S distinct from zL itself.

If zL is a limit point of a set S, we can find an infinite sequence of distinct points
z1, z2, ... belonging to S such that Limn→∞zn = zL. Recall that if G is an open set ,
around every point in G we can find at least one neighbourhood (circle with some radius
ρ > 0 ) such that every point of it belongs to G.

It is now obvious that every point on an open set is a limit point of the set in the above
sense. However, not all limit points of an open set belong to it! For example, |z| < 1 is
the “open unit disk”. The points, |z| = 1 do not belong to it. However, as you can see by
simple geometry that every such “boundary point” is a limit point of the unit disk.

The complement of an open set is closed and vice versa. Unlike an open set, a closed set

is one which contains all its limit points . A closed set with the property that every point of it
is also a limit point is called a perfect set . These are results of topology which you can
use, whenever required. AT – p.5/18



2. Disks, limit points, open and closed sets

The preceding discussion motivates the following:
Definition 4.4: A closed and bounded set of points of the complex plane is called a compact

set . By definition, if S is a compact set, it is a subset of a sufficiently large disk centred at
the origin and it contains all its limit points.

Every point of a compact set S which has a neighbourhood contained entirely in S is
called an interior point of S. The set of all interior points of S is called the interior of the
set. It is necessarily open. All the points of S which do not belong to its interior are called
its boundary points .
Examples:

1. The unit disk, U = (z : |z| ≤ 1) is compact (in fact it is a perfect set).
2. The entire complex plane C is closed, but is not bounded, so it cannot be compact.
3. A finite union of compact sets is compact.
4. A triangle bounded by three line segements is compact (we include points enclosed
by the perimeter and those belonging to the perimeter).
5. A polygon is a set bounded by a finite number of straight-line segements called sides

joining its corner points . The union of the sides of a polygon is a non-self intersecting
closed curve (perimeter ) which divides the plane (according to Jordan’s theorem) into an
unbounded open set and a bounded, simply connected open set interior . The polygon is
the union of the perimeter and the interior. It is a perfect compact set.
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3. Properties of continuous functions

Theorem 4.1: Let R be a compact set of the complex plane and let f(z) be a continuous
function of the complex variable defined over R. Then,
1. There exists a finite constant such K that, |f(z)| ≤ K; in other words, the function
must be bounded uniformly over R.
2. f(z) is uniformly continuous in R: this means, given ǫ > 0, we can find a δ which

depends only on ǫ such that |f(z)− f(u)| < ǫ, whenever |z − u| < δ for arbitrary z, u ∈ R.
3. If a is any constant, af(z) is continuous in R.
4. If g is another continuous function defined over R, the functions, f + g; fg are also
continuous.
5. If g does not vanish in R in addition to being continuous, f/g is continuous in R.
6. If a function f(z) is defined on the finite complex plane, we can discuss its continuity
at the "point at infinity" by considering the the continuity near u = 0 of the function f( 1

u
).

7. A function f(z) is continuous in R if and only if its real and imaginary parts are
continuous functions of the real variables x, y where z = x + iy. In particular, if f(z) is
continuous, |f(z)| is also continuous. The converse is not true in general.

This theorem is the complex variable analogue of Theorem 3.3. It is a rich source of
continuous functions of complex variables. Note that there must be at least one point
z = zM such that |f(zM )| = K. In other words the function must attain its bound at
some point in R.
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3. Properties of continuous functions

Proposition 4.1: 1. All polynomials in z are continuous at every point in the finite complex
plane.
2. The function defined for every finite z = x + iy by,

e(z) = ex [cos y + i sin y]

generalizes the real exponential function , et and the Euler-De Moivre function e(θ) (θ real)
defined previously. It is continuous at every z.
3. The function g(z) = 1/z defined for 0 < |z| < ∞ is continuous at every point. We
may consider its behaviour at "infinity" by setting u = 1/z and consider the function,
g(u) = u. Strictly the original function is not defined at u = 0; if we define it to be zero,
we see that g(u) is continuous at u = 0. Hence g(z) is continuous at infinity.
4. If f(z) is a rational function , it is continuous at every finite point except at the zeros of
the denominator. If the substitution u = 1/z is made and the function is suitably defined
at u = 0, we may examine its continuity at infinity. All polynomials are unbounded near
infinity and so cannot be continuous there. Hence, a rational function can be continuous
at infinity only if the degree of the numerator does not exceed that of the denominator
polynomial.
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4. Sequences and series of functions

We next consider some well-known limit processes with functions of a complex variable
z defined over a compact region R. If you don’t like abstract thinking, you may take the
compact region of definition to be some disk of finite radius ρ and centre c in the
complex plane. The following definition describes uniform convergence of a sequence of

functions .

Definition 4.5: A sequence of functions [un(z)] defined over R is said to be uniformly

convergent in R to a limit function f(z), if for any given ǫ > 0, we can find an N(ǫ) such
that |f(z) − un(z)| < ǫ for all n > N(ǫ) and for all z ∈ R.

Theorem 4.2: The limit of a uniformly convergent sequence of continuous functions
defined over a compact set R is a continuous function. If a series of continuous functions
converges uniformly in R, its sum is continuous. (To be learned and used without proof).

Theorem 4.3 ”Weierstrass’ M-test for absolute and uniform co nvergence”: Let
F (z) = Σ∞

n=1un(z) be a series of continuous functions un(z) defined over a closed and
bounded (ie compact) region R. Suppose further that |un(z)| < Mn where Mn are
positive constants for z ∈ R and each n. Then, the series is absolutely and uniformly

convergent in R if the dominant series of positive terms, ΣMn converges. (To be used without
proof).
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4. Sequences and series: applications

1. The Geometric series

G(z) = Σ∞

n=0zn

converges absolutely and uniformly in 0 ≤ |z| ≤ r < 1 and therefore defines a
continuous function. Obviously, |z| ≤ r → |zn| ≤ rn. Using Weierstrass’ M-test and
the fact that the real-valued geometric series converges for r < 1, we obtain the result.
Of course, we already know that the series converges to G(z) = 1

1−z
in the set

concerned.

2. The exponential function E(z) defined by the power series for every finite z by the power

series

E(z) = 1 + Σ∞

n=1

zn

n!

Converges absolutely and uniformly in any disk with centre z = 0 and radius ρ. It
therefore represents a continuous function in any compact subset of the complex plane.
In any such disk, |z| ≤ ρ, using the M-test, we see that the dominant series is simply the
real exponential series , eρ ≥ |E(z)|. Theorem 4.3 gives the required result. You may use
this to prove that the series for E(−z), E(iz), E(−iz) are all uniformly and absolutely
convergent convergent in such disks, and therefore represent continuous functions in the
finite complex plane. AT – p.10/18



5. Contours in the complex plane

You already know that continuous functions of a real variable can integrated over any finite
interval. We wish to study the analogue of such integrals for continuous functions of a
complex variable .

Definition 4.6: A rectifiable contour in the complex plane is a complex function z(t) of a real

variable t defined over a bounded, closed interval t ∈ [a, b], and which has a finite total
length. The end points or terminii are z(a) and z(b) respectively.

Remarks: The curve is called piece-wise smooth if it has a continuous tangent except for a
finite number of corner points . The curve is called closed if the terminii coincide. It is called
simple if it has no self-intersections.

Examples:

1. The perimeter of a triangle or a regular polygon is a piece-wise smooth, simple,
closed, rectifiable contour.
2. The circumference of any circle or ellipse is a smooth, closed, rectifiable contour.
3. The semi-circle formed by the upper half of the unit circle and the real axis is a simple,
closed, recifiable, piece-wise smooth contour.
4. The straight line segments joining z = 0; z = 1 and the latter to z = i form a
piece-wise linear, non-closed contour . The terminii are z = 0, z = i respectively.
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5. Geometry of contours

I remind you of some simple properties of curves in the plane. If we are given two
smooth real functions of a variable t ∈ [0, 1], x(t), y(t), a smooth plane curve K is
parametrically defined by the point (x(t), y(t)).

The tangent to K at a point t is obtained from the 2-vector: ( dx
dt

, dy
dt

) This gives the
direction of the tangent at (x(t), y(t)). For smooth curves, this is a continuous function of
the curve parameter t. The unit tangent vector t is given by the formula:

t =
dx

ds
ex +

dy

ds
ey

where ex, ey are unit vectors along the x, y axes and ds =
h

( dx
dt

)2 + ( dy
dt

)2
i1/2

dt, is

the arc-length differential (distance between the points, (x(t), y(t)) and
(x(t + dt), y(t + dt)) on the curve).

The unit normal vector to the curve K at a point t, denoted by n is orthogonal to t and
has the formula:

n = −
dy

ds
ex +

dx

ds
ey
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5. Geometry of contours: contd.

Remarks: A smooth curve is always rectifiable . Thus, its length s(t1, t2) between any two
points with parameters t1, t2 is given by the formula,

s(t1, t2) =

Z t2

t1

ds

=

Z t2

t1

»

(
dx

dt
)2 + (

dy

dt
)2

–1/2

dt

At a corner point of the curve, the tangent vector can have two distinct values, depending
upon which side of the point we approach it. At all other ordinary points we find that t has
a finite derivative. Since t.t = 1 and t.n = 0, we may write,

dt

ds
= κn

κ = −
dy

ds

d2x

ds2
+

dx

ds

d2y

ds2

where κ is the curvature of K at the point t. If θ is the angle made by t with the
x-axis, dθ

ds
= κ. The curvature is infinite at corner points. Since s(0, t) is a smooth,

monotonic increasing function of t, we may use s as the “curve parameter”, if we wish!
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5. Contours: complex representation

We can translate the results into complex notation: ds
dt

= | dz
dt

|

s(t1, t2) =

Z t2

t1

|dz|

=

Z t2

t1

|
dz

dt
|dt

The tangent and normal unit vectors at a point (parametrized by s ) on the curve are
represented by complex numbers on the unit circle:

t =
dz

dt
/|

dz

dt
| =

dz

ds

n = i
dz

dt
/|

dz

dt
| = i

dz

ds

Since, dz
ds

dz̄
ds

= 1 and dz
ds

= cos θ(s) + i sin θ(s), where θ(s) is the angle made by t

with the real axis, d2z
ds2

= κi dz
ds

, which implies that

κ =
dθ

ds
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5. Contour integrals

Definition 4.7: Let K be a rectifiable, piece-wise smooth, simple contour with the equation,
z(t) = x(t) + iy(t); t ∈ [0, 1] and terminii z(0) = a; z(1) = b (not necessarily closed).
Let R be a compact region containing K in its interior. Let f(z) = u + iv be a continuous

function defined over R. Then, the contour integral of f(z) taken between two points,
z(t1), z(t2) on K is defined by,

Z

K(z1,z2)
f(z)dz =

Z t2

t1

f(z(t))
dz

dt
dt

=

Z t2

t1

[u(x(t), y(t)) + iv(x(t), y(t))] (
dx

dt
+ i

dy

dt
)

=

Z t2

t1

(u
dx

dt
− v

dy

dt
)dt + i

Z t2

t1

(u
dy

dt
+ v

dx

dt
)dt

The contour can also be parametrized by the arc length s(t) along it measured from a.

Note that the complex contour integral is a complex number equivalent to two real line

integrals you are familiar with from advanced calculus. These can always be proved to
exist using Theorem 3.5 . Note that the value of the integral depends not only upon the
integrand and the limits, but also on the curve K . The following theorem states some
basic properties of the contour integral.
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5. Contour integrals: key properties

Theorem 4.4: Let K be a rectifiable, piece-wise smooth, simple contour with the equation,
z(t) = x(t) + iy(t); t ∈ [0, 1] and terminii z(0) = a; z(1) = b (not necessarily closed).
Let R be a compact region containing K in its interior. Let f(z) = u + iv be a continuous

function defined over R. Let 0 ≤ t1 < t2 < t3 ≤ 1, where z2 = z(t2) is a corner or

ordinary point between the ordinary points , z1 = z(t1), z3 = z(t3). Then, if c is any
complex constant and g(z) is any continuous function defined over R,

Z

K(z1,z3)
fdz =

Z

K(z1,z2)
fdz +

Z

K(z2,z3)
fdz (1)

Z

K(z1,z3)
fdz = −

Z

K(z3,z1)
fdz (2)

Z

K(z1,z3)
cf(z)dz = c

Z

K(z1,z3)
fdz (3)

Z

K(z1,z3)
(f(z) + g(z))dz =

Z

K(z1,z3)
fdz +

Z

K(z1,z3)
gdz (4)

|

Z

K(z1,z3)
fdz| ≤

Z

K(z1,z3)
|f ||

dz

dt
|dt (5)
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5. Contour integrals: proof of Theorem 4.4

Proof: These results are simple consequences of well-known properties of real integrals
and Definition 4.7. It is important to understand that in contour integration, the sense in
which the contour is described (ie from one point to another in the direction of increasing
curve parameter) is important.

If a contour is closed we can describe it positively in the sense of counter-clockwise

direction. This means that the interior of the region bounded by the contour lies to the left

of the tangent vector as the curve is described. The opposite direction is negative .

Part 5 follows from the corresponding inequality for sums and taking of suitable limits
(this will appear in the Problem set as will several illustrative examples). It is a very
important result and will be used frequently, as will the theorem itself.

The definitions and theorems given thus far deal with contours which are defined as
rectifiable curves contained within compact sets. Using limits we can extend many
results, under suitable conditions, to contours which “go to infinity”. This will be done
later, when required.
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6. Contour integrals of series

We have seen in Theorem 3.8 that integrating a uniformly convergent series of real
functions over finite limits leads to simple results about the interchanging of limits (ie
“integral of the sum equals the sum of integrals”). We can now state a corresponding
theorem (without proof!) relating to contour integration dealing with absolutely and
uniformly convergent series of functions of a complex variable defined over a compact
set relative to rectifiable contours.

Theorem 4.5: Let R, K be defined as in Theorem 4.4. Let s(z) = Σ∞

n=1un(z) be an
absolutely and uniformly convergent series of continuous functions un(z) defined over
R. Then,

Z

K(z1,z2)
[Limn→∞Σn

k=1uk(z)] dz = Limn→∞(Σn
k=1

Z

K(z1,z2)
uk(z)dz)

where the series on the right converges absolutely and uniformly for any pair of points
z1, z2 on K.
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