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1. Introduction to complex functions

As we discussed in Lecture 1, a function is a rule which assigns to each element in a
certain set called the domain of definition of the function , a unique element of another set
called the range of the function . This notion is so fundamental that with the concept of a set ,
it forms the entire basis of mathematics.

We shall find that functions involving complex numbers are of two kinds. If we have a
rule which assigns to each integer n from any finite or infinite set of integers K a
definite complex number zn, such a function is called a complex sequence . We studied
such “functions of an integer variable” in Lecture 2. Let us next consider what are called
complex functions of a real variable .

Definition 3.1: Let t ∈ (a, b) be a real variable such that a < t < b, where a < b are
arbitrary real numbers. If for each t, there is assigned a unique complex number f(t), we
say that f(t) is a complex function of the real variable t defined over the open interval (a, b).

This definition says that to assign f(t) means to define two real functions u(t), v(t)

such that f(t) = u(t) + iv(t). Of course, for each t, there can only be one u(t) and
corresponding v(t). This is requiring that functions mentioned are single-valued . Later
we will allow for some other possibilities.

We call t the independent variable . Strictly, f(t) is the value of the function, but it is
traditional to call it the function and set z = f(t). We often call z the dependent variable .AT – p.2/18



1. Examples of complex functions

1. Consider, for real t,−∞ < t < ∞, z = f(t) = c, where c is a complex number or

constant . This is called a constant function . This shows that many values of the dependent

variable can be assigned to the same function value.

2. Functions need not be given by analytical formulae: using the same independent
variable t defined above, let us define a function φ(t) in words: consider the decimal
expansion of t. Define u(t) to be that real number obtained using the odd digits of its
decimal expansion after the decimal point. Let v(t) be defined using only the even
digits. Define φ(t) = u(t) + iv(t). Since the decimal expansion of any real number is
unique with usual conventions about recurring 9’s, this is also a unique assignment.

3. Let 0 ≤ θ ≤ 2π. This is called the closed interval , [0, 2π]. We define
e(θ) = cos θ + i sin θ. We have already met this expression in Lecture 1. It satisfies
|e(θ)| = 1 and the remarkable functional equation ,

e(θ1 + θ2) = e(θ1)e(θ2)

A closely related function defined over t ∈ (−∞,∞):

w(t) = (
1 − t2

1 + t2
) + i(

2t

1 + t2
)
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1. Functions of a complex variable

It is possible to have functions which assign complex values to complex numbers.

Definition 3.2: Let D be a subset of the complex plane and z is any point in D. If to each z

is assigned a unique complex number, w = f(z), we say that f(z) is a function of a
complex variable. In principle, we can also have real functions of a complex variable.

To see what this definition entails, we consider several illustrative examples. Consider
the function,

I(z) = z

for any complex number z. This function is called the identity function and is defined for
every complex number. A less trivial example is provided by the function,

w(z) = z2

We may write, z = x + iy; w = u + iv. Using the rules of complex algebra, we find the
relations,

u = x2 − y2

v = 2xy
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1. Picturing complex functions

We may think of a complex function of a real variable as simple parametric representation of
a curve, x = u(t); y = v(t) in the complex plane. Thus, e(θ) describes the
circumference of the unit circle anti-clockwise as θ varies from 0 to 2π. Such curves
can be quite complicated with self-intersections and even separate pieces. The
geometrical picture helps greatly in understanding the properties of the function.

A (complex) function of a complex variable requires more mental gymnastics! Let us
imagine two separate complex planes , the z = x + iy plane and the w = u + iv plane. If
z belongs to D (a subset of the z plane, for example, the whole of it), for each z we
have a point u(x, y) + iv(x, y) in the w plane. The set of all such function values is the
range R of the function and it is a sub-set of the w plane. The function is said to map

the domain D into the range R.

It is sometimes useful to think of a function of a complex variable as mapping the
complex plane (or a sub-set) into itself . In either case, w(z) is called the image point of
the object point z. The language is drawn from optics. You should be aware that people
also say that z is the argument of the function. One must be careful not to confuse this
with the other use of this word to mean the amplitude/phase of a complex number!
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2. Limits of functions and continuity

Continuity is the single most important concept in function theory. We will now do a quick
review of properties of functions of a real variable. The basic definitions for real functions:
if x ∈ (−∞,∞) (ie the domain is the real line) and f(x) is a real function of x (as in
ordinary calculus), we find its value at any point x0 ∈ (−∞,∞) to be f(x0). Now if a
sequence of points y1, y2, .. is considered, and we are told that Limn→∞yn = x0,
what can we say about the image sequence f(y1), f(y2), ..? In general, absolutely nothing!

If, however, we know that the function is continuous at x0, both our geometrical intuition
and the standard calculus definition tell us that,

Limn→∞f(yn) = f(Limn→∞yn)

= f(x0)

This says that if a real function f(x) is continuous at a point x0 in its domain of definition,
every sequence of points in its domain which converges to x0 is mapped by the function
to a convergent sequence with limit f(x0) in its range. In fact, the converse defines continuity!

Thus, a function is continuous at a point if and only if every convergent sequenc e in its domain is

mapped to a convergent sequence in its range; furthermore, t he image sequence must have as its

limit the value of the function at the point of continuity.
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2. More about continuity

Using limits of functions to test for continuity is easy. However, to show that a given

function is continuous, the definition asks us to test every possible sequence converging to
the point of continuity! This is very inconvenient.

In practice, the following “ǫ − δ” definition is the most powerful one:

Definition 3.3: A real function f(x) defined in some interval, (a, b) is continuous at
x0 ∈ (a, b) if and only if, given ǫ > 0 arbitrarily small, we can find a number δ (in general
dependent upon ǫ, x0) such that for all

x ∈ (x0 − δ, x0 + δ); f(x) ∈ (f(x0) − ǫ, f(x0) + ǫ).

In otherwords, if the function is continuous if and only if we can be able to find a
δ-neighbourhood of x0 which is mapped entirely into any given ǫ-neighbourhood of f(x0).

Applying this requires patience and practice! In this course, this level of rigour will not be
expected, but you must clearly understand the definition and know how it is used.

Example 1: The function f(x) = c, where c is any real constant is defined over the whole
real axis. It is obviously continuous, at every point in its domain, according to both
definitions.

Example 2: Let f(x) = x; you can see that this too is clearly continuous everywhere!
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2. Continuous functions: examples

Example 3: The function defined by the rules: f(x) = 1; x > 0, f(x) = −1; x < 0 and
f(0) = 0 is continuous at every point except x = 0. As x tends to zero through positive

values , the function tends to 1. When x approaches zero through negative values it tends
to −1. If x tends to zero in an arbitrary manner, the function does not approach any
definite limit. Hence it is discontinuous at 0 (draw the function!).

Example 4: If f(x) = 1
x
; x 6= 0 and f(0) = 0, again it is easy to see that f is

discontinuous at zero.

Example 5: f(x) = sin(1/x); x = 6= 0 and f(0) = 0 is discontinuous at x = 0. Thus
consider the sequence, xn = 2

π(4n+1)
; n = 1, 2, ... f(xn) = 1. Hence, as x tends to

zero through these values, it cannot equal f(0) = 0. However, the function
g(x) = x sin(1/x) is continuous at x = 0.

Example 6: A function f(x) defined everywhere on the real line has the Lipschitz property

at a point x0 if there exists a constant K > 0 such that, |f(x0)− f(x)| < K|x − x0|. It is
easy to show that if a function has the Lipschitz property at x0, it must be continuous
there. The converse is not true in general, as there are continuous functions which are
not Lipschitz at a point of continuity.

Example 7: . The real function f(x) = |x| is Lipschitz at x = 0 and hence continuous. The
function g(x) = |x|1/2 is continuous but not Lipschitz at x = 0. AT – p.8/18



2. Properties of real continuous functions

Theorem 3.1: Let f(x) be a real function defined on an interval D = (a, b). If a < x0 < b

is a point of continuity of the function, the function is bounded in a neighbourhood of x0

included in D.
Proof: Given ǫ > 0, we know that a δ can be found such that for all

a < x0 − δ, < x < x0 + δ < b, |f(x) − f(x0)| < ǫ. Hence, |f(x)| < |f(x0)| + ǫ, by
triangle inequality.

We are usually interested in functions which are continuous not merely at a single point
but in an interval. These come in four types: [a, b] (closed interval including both end
points), (a, b) (open interval excluding both endpoints) and semi-closed intervals, [a, b),
(a, b]. A function continuous at every point in an interval is said to be continuous over the
interval. Particularly important types of interval are compact intervals which are both
closed and bounded . This means that their end points are finite numbers. The following
theorem may be assumed and used without proof.

Theorem 3.2: A real function which is defined and continuous over a compact interval [a, b]
is bounded in the interval; namely, two finite numbers m, M (“minimum” and “maximum”)
exist such that m ≤ f(x) ≤ M . There are points of the interval where f(x) actually
equals m and M (ie “attains its bounds”). If v ∈ [m, M ] is any number, there exists a y in
the interval such that f(y) = v (“intermediate value theorem”).
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2. Continuous functions: algebra

Theorem 3.3: Let f(x), g(x) be a real functions which are defined and continuous over the
interval D = [a, b]. Then, if α, β are arbitrary real numbers, the following results hold:

1. The functions s(x) = αf(x) + βg(x); p(x) = f(x)g(x) are continuous over D.

2. The function h(x) = |f(x)| is continuous over D.

3. The functions f+(x) = Max[f(x), 0] ≥ 0, f−(x) = −Min[f(x), 0] ≤ 0 are
continuous over D and h(x) = f+(x) + f−(x); f(x) = f+(x) − f+(x).

4. If g(x) 6= 0 at any point, q(x) =
f(x)
g(x)

is defined and continuous over D.

5. If f(x) maps D onto Rf = [m, M ] and v(x) is defined and continuous over Rf , the
“function-of a function”, w(x) defined by w(x) = f(g(x)) is defined and continuous
over D.

Proof: This is surprisingly simple to prove and left as an exercise! (Hint: use the “algebra
of limits” and apply the sequential definition of continuity at a point.)

We can thus “manufacture” continuous functions from just constants and f(x) = x in
profusion. For example, positive integral powers of a real variable x are all continuous
functions over every compact interval, as are positive square and n-th roots of |x|.

“Polynomials” are functions of the form, P (x) = a0 + a1x + .. + anxn for some integer
n ≥ 0 and the a’s are real constants. All such polynomials are continuous over every
compact interval.
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2. Real functions: differentiability

Definition 3.4: Let f(x) be a real-valed function of a real variable, defined and continuous
over (a, b). It is differentiable at a point x0 if the limit,

Limǫ→0
f(x0 + ǫ) − f(x0)

ǫ
= f ′(x0) =

df

dx

exists as a finite number. The number f ′(x0) is called the derivative or differential

coefficient of f at x = x0.

The function is said to be differentiable over the interval if it is differentiable at every point
of the interval. It is said to be continuously differentiable if the derivative, f ′(x) is a
continuous function. If the function is differentiable except at a finite number of points, it
is called piece-wise differentiable.

I will assume from now on all the results from both Differential and Integral calculus and
vector analysis. The following theorems are stated without proof.

Theorem 3.4: If a function is differentiable over a compact interval, it is continuous over
that interval.

The converse is not always true. There are continuous functions which have no finite
derivative anywhere! The stated results help us to create large and useful classes of
functions from polynomials and algebraic operations.
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2. Integrability of continuous functions

Theorem 3.5: (Cauchy) The integral of a continuous function f(x) over an interval [a, b] is
the limit of the sum,

Limn→∞Σn
r=0f(a +

r(b − a)

n
)(

b − a

n
) =

Z b

a
f(x)dx

As you know this has a well-known interpretation in terms of the area under the curve
y = f(x). The following result (due to Newton and Leibniz ) is very important.

Theorem 3.6: If f(x) is continuously differentiable over [a, b] with derivative f ′(x), then,

f(x) − f(a) =

Z x

a
f ′(t)dt

Thus, integration and differentiation are inverse processes.

A final item in our review of the properties of functions of real variables, we will consider
some important concepts relating to sequences and series of functions. I will state the
key definitions and theorems with which you should be familiar ( proofs will not be
required although worth reading up!)
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2. Sequences and series of real functions

Definition 3.5: An infinite sequence of real functions [fn(x)] defined on (a, b) is said to tend
to a function g(x) at every point x of the interval, if the following holds:

Limn→∞fn(x) = g(x)

Example 1: The sequence [xn] where −∞ < x < ∞. For |x| < 1, the limit function exists,
and, g(x) = 0; If x = 1, g(x) = 1. If x > 1, the sequence is unbounded (ie does not
converge) and the limit does not exist. If x = −1, again, the sequence does not
converge but “oscillates finitely”. If x < −1, it oscillates unboundedly.

Example 2: The sequence 1−xn+1

1−x
= 1 + x + ... + xn converges to g(x) = 1

1−x
, for

|x| < 1. The limit function is continuous (and even differentiable to all orders!) at every
point of the open interval , (−1, 1).
Example 3: The sequence xn

1+xn
for x ∈[0,∞) converges to g(x), where g(x) = 0 for

0 ≤ x < 1, g(1) = 1/2 and g(x) = 1 for x > 1. In this case, the limit exists at every point
of the set but the limit function is discontinuous!

Recall that for convergence at a point x, we mean that for any ǫ > 0, we can find an
integer N , which will depend upon both ǫ, x, such that |g(x) − fn(x)| < ǫ for n > N .
There may be cases where N depends only upon ǫ, independently of x. This type of
convergence has a special significance and name.
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2. Uniform convergence

Definition 3.6: Let [a, b] be a compact interval. A sequence fn(x) of real functions defined
over this interval is said to converge uniformly to a limit g(x) if and only if, for any given
ǫ > 0, we can find an N(ǫ) such that for all n > N(ǫ), |fn(x) − g(x)| < ǫ, for every point

of the interval.

The following theorem indicates the very great importance of this concept.

Theorem 3.7: Let fn(x) be a series of real functions defined and continuous on the
closed and bounded) interval, [a, b]. Suppose this sequence converges uniformly over
this interval to a function g(x). Then,

1. The limit function g(x) is continuous over the interval. (“a uniformly convergent
sequence of continuous functions has a continuous limit”).

2. If a ≤ c < d ≤ b (ie, [c, d] is a sub-interval ), the sequence of integrals
R d

c fn(x)dx

converges to the integral,
R d

c g(x)dx.

3. If the given sequence of functions are continuously differentiable in the interval and if
the sequence of derivatives, f ′

n(x) converges uniformly in the interval to a limit
function h(x), then, h(x) = g′(x).
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2. Uniformly convergent series of functions

Theorem 3.7 allows us to “interchange” limiting operations as follows :

Limn→∞

Z d

c
fn(x)dx =

Z d

c
(Limn→∞fn(x))dx

Limn→∞

d

dx
fn(x) =

d

dx
[Limn→∞fn(x)]

If we consider the real sequence, fn(x) = enx
−e−nx

enx+e−nx
(ie of hyperbolic tangents), it is

easy to show that it converges ( as n → ∞) at every x to a function which is
discontinuous at x = 0 but everywhere else to either 1 or −1. It does not converge
uniformly in any closed interval surrounding the origin, as otherwise the limit function
would be continuous there! This sequence arises naturally in the theory of shock waves .

Theorem 3.8: If sn = Σn
j=1uj(x) is the n-th partial sum of real continuous functions uj(x)

defined on [a, b] and the series (ie sn(x)) converges uniformly on the interval, the limit
s(x) is continuous. It may be integrated term-by-term (over any sub-interval [c, d] ) and
the resulting series converges uniformly to the integral of s(x) over the corresponding
sub-interval. Theorem 3.6.3 can be applied to justify term-by-term differentiation of
uniformly convergent series. AT – p.15/18



3. Smooth curves in the complex plane

We can immediately extend all the previous results to complex functions of a real variable .
Indeed if z = f(t), then we can always write, z = f(t) = u(t) + iv(t). We simply
investigate the real functions u, v to make statements about f .

Definition 3.7: If t ∈ [0, 1] and x(t), y(t) are real, twice continuously differentiable
functions of t, the complex function, z(t) = x(t) + iy(t) represents a smooth curve in the
complex plane. The complex number, dz

dt
= dx

dt
+ i dy

dt
is called the tangent vector at the

point z(t). We say that the function maps the closed interval [0, 1] onto the curve z(t) in
the complex plane. The curve is closed if z(0) = z(1); ie the function is periodic .

If s(t) is the arc length of the curve measured from z(0), it is clear that,
ds
dt

= | dz
dt

| = ( dz
dt

dz̄
dt

)1/2. Smooth curves as defined have finite lengths given by the
usual formula:

s(1) =

Z 1

0
|
dz

dt
|dt

Smooth curves have continuously turning tangents at every point t and have a unique
curvature at each point. If two distinct values of the parameter t are mapped into distinct
points (the mapping is “one-one”) in the complex plane, the curve has no
self-intersections .
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4. Complex topology: key notions

We now move on to the real “meat” of the subject: complex functions of a complex variable .
The following definitions are intended to convey the essential ideas of point set topology .
The first generalizes the idea of an open interval on the real axis and is key to analysis with
functions of a complex variable.

Definition 3.8: An open disk D(c; ρ) centred at c with radius ρ is the set of points z such
that, |z − c| < ρ. Its closure is the set D∗ of points z such that |z − c| ≤ ρ, and its
boundary is the circle, |z − c| = ρ. The complement Dc

∗
of the closure of the disk is its

exterior , and is made up of z such that |z − c| > ρ.

Definition 3.9: An open set S of the complex plane is a set of points z such that at every
z ∈ S we can find a ρ(z) > 0 such that the open disk , D(z, ρ(z)) is a sub-set of S. Thus,
at every point z in S, there exists an open disk with all of its points included in S. The
complement of an open set is called a closed set. The null set and whole complex plane are,
by definition open sets.

Definition 3.10: An open set S with the property that any two points are the end points of a
continuous non-self intersecting curve C lying entirely within S is called a connected set . If
any two such connecting curves can be continuously deformed into each other, the set is
said to be simply connected .
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4. Complex topology: examples

Let us consider some simple examples to understand these concepts

Example 1: Every open disk is an open set.
Example 2: The exterior of any open disk is also an open set
Example 3: The boundary of any open disk is not an open set.
Example 4: An arbitrary union of open sets is an open set.

Definition 3.11: If an open set has the property that any two of its points can be connected
by a straight-line segment of which they are end points, and every point of the line
belongs to the set, it is called convex .

It can be shown that continuous, closed curves which have no self-intersection s divide the
whole complex plane into two simply connected open sets called the “interior” and the
“exterior”. These are separated by set of boundary points (ie, the curve itself). This
intuitively obvious observation is a non-trivial result of topology called the Jordan Curve

Theorem . We will simply assume it without proof!

Definition 3.11: A connected open set of the complex plane is called a Region . Unless
stated otherwise, we shall always consider complex functions defined over regions. The
entire complex plane itself is a region. Regions need not always be simply connected or
convex , although they can be in many cases.
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