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1. Sequences of complex numbers: definition

I shall assume some familiarity with notions of elementary theory of sets like union,
intersection, null set, set inclusion, set functions etc. I shall also assume knowledge of
limits, sequences and series of real numbers . We can now extend these ideas to the
complex plane . Many results are simple extensions but some are quite new and unique to
the complex plane. We begin with sequences and their properties. We will often use the
notation, [an]∞n=1 = [a1, .., an, ..] to denote a sequence. When the range of the index is
understood, we may leave it out in the interests of brevity.

Definition 2.1: An infinite sequence of complex numbers is a countable set (finite or infinite)
of complex numbers, z1, z2, .., zn, ...

Remarks: The individual numbers of this ordered set of complex numbers are called the
elements of the sequence. For example, z5 is the fifth element. If the total number of
elements is finite , we have a finite sequence. Otherwise, the sequence is said to be
infinite . We may occasionally also deal with two-way sequences: ..., z−2, z−1, z0, z1, ....

You will recall that a function is a rule which assigns a unique element of a set called its
range to each element of a set called its domain . It is seen that a complex sequence is a
function from the set of integers (domain ) 1, 2, .. into the complex plane (range ).

Examples: 1) 1, i,−1,−i is a four-element sequence. 2) 1, z, z2, z3, .. is an infinite

sequence. 3) 1, z
1+z

, z2

1+z2
, .. is another infinite sequence. AT – p.2/19



1. Sequences: limits

In analysis we are mainly interested in infinite sequences . The key concept here is the idea
of the limit of a sequence .

Definition 2.2: An infinite sequence of complex numbers [zn]∞n=1 is said to converge to a limit

if there exists a complex number λ such that by taking n sufficiently large, we can make
the “distance” |λ − zn| between λ and zn as small as we please.

Note that this does not tell us how to find the limit of a sequence, only how we can find
out if the sequence has a given complex number as its limit . We can picture the definition of a
convergent sequence, ie one which converges, using the geometrical concept of
neighbourhood .

Definition 2.3: Given any complex number z and a real positive number ρ, we define the
vicinity or ρ-neighbourhood of the given complex number to be the set of all those complex
numbers w within the circle of centre z and radius ρ; ie , all w such that |z − w| < ρ.

According to this definition, the points on the circle, |z − w| = ρ do not belong to the
neighbourhood in question!

Proposition 2.1: If for every ρ > 0, all except possibly a finite number of elements of the
infinite sequence, [an] belong to the ρ-neighbourhood of λ, then the sequence converges

to λ.
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1. Sequences: the meaning of convergence

The meaning of convergence is this: given any test of accuracy ρ > 0 (however small), all,

except possibly a finite number of elements of the sequence should lie within the circle of
radius ρ with centre λ. Of course the “tighter” the test of accuracy, the smaller the ρ

and more points of the sequence will fail to be in the circle.

For every given measure of accuracy, all elements with index larger than some integer
N which will depend upon ρ in general (naturally!) must indeed lie within the circle for us
to conclude the sequence converges to λ.

Examples:

1. Consider [an] where an = c for n = 1, 2, ..., c being some complex number. Then,
the sequence converges to c and we write, Limn→∞an = c.

2. Let N = 10100; this number is larger than all the electrons in the cosmos! Let [bn] be
a complex sequence with the following properties: bn = nN in; for n = 1, 2, .., N ; and
bn = c, for n > N , where c is a complex number. Show that Limn→∞bn = c! This
shows that no matter how “badly behaved” a sequence is for a finite number of
elements, its convergence depends only upon the “ultimate tail”.

AT – p.4/19



1. Sequences: examples

1. Let [an] , [bn] be a pair of real, convergent sequences. They define a unique complex
sequence, zn = an + ibn. Then, if Limn→∞an = α; Limn→∞bn = β, where α, β are
the respective (real) limits, the complex sequence, [zn = an + ibn] converges to the
complex number, α + iβ and conversely, if the complex sequence is convergent, its real
and imaginary parts are also convergent.

Proof: Consider zn − (α + iβ) = (an − α) + i(bn − β). Using the “triangle
inequality”,|z − (α + iβ)| ≤ |(an − α)| + |(bn − β)|. Since the real sequences converge
(by hypothesis) the RHS can be made arbitrarily small by choosing n sufficiently large.
This shows that the complex sequence must converge. To prove the converse, we
merely note that, |z − (α + iβ)|2 = (an − α)2 + (bn − β)2 from Pythagoras’ Theorem. If
the complex sequence converges, since |z − (α + iβ)| is greater than |an − α| and
|bn − β| separately, the two real sequences must converge.

2. If |z| < 1, the infinite sequence, [zn]∞n=1 converges to 0, for |zn| = |z|n. Now, [|z|n] is
a real, positive sequence which obviously converges to zero for |z| < 1.

3. The complex sequence [zn] converges to zero if and only if the real sequence, [|zn|] also
converges to zero. This clearly follows from Example 1, above.
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2. Sequences: divergence, boundedness

Definition 2.4: An infinite sequence which has no finite complex number as its limit is
called divergent .

As an example of a divergent sequence consider the sequence defined by the elements,
zn = in. The elements always take on the four values 1,−1, i,−i. Clearly there is no

complex number around which these numbers “cluster”. They occur arbitrarily far into
the sequence. Thus, the sequence is divergent.

Another type of divergence arises when the elements do not simply oscillate as in the
above example but actually “blow up” by having their moduli grow without limit. A typical
example is provided by the sequence, zn = cn, where c is a complex number with
modulus greater than unity. Evidently, |z|n becomes arbitrarily large as n increases and
therefore there can be no finite limit.

Definition 2.5: An infinite sequence [zn] with the property that Limn→∞
1

|zn|
= 0 is said to

tend to infinity .

Definition 2.6: An infinite sequence [zn] such that there exists a finite positive number M

satisfying, |zn| < M for all n is called a bounded sequence . If for any given positive number

K however large, we can find some m such that |zm| > K, the sequence is called
unbounded .
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2. Sequences: properties

1. The sequence [zn] is bounded or unbounded, according as the real sequence [|zn|] is
bounded or unbounded.

2. A complex sequence which tends to infinity is necessarily unbounded , but the converse
may not be true.

3. The complex sequence defined by
ˆ

an = (1 + z
n

)n
˜∞

n=1
is bounded.

Proof: Consider,

|(1 +
z

n
)n| = |(1 +

z

n
)|n

≤ |(1 +
|z|

n
)|n

You know that for any real, positive x, 1 + x < ex (I hope you do!). Substituting, we obtain
the bound for the LHS: |(1 + z

n
)n| < (e|z|/n)n = e|z|. Hence the result holds.

4. The sequence [2nin] oscillates unboundedly .
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3. Algebra of convergent sequences

Theorem 2.1:

1. Every convergent complex sequence has a unique limit . Furthermore, if
Limn→∞zn = c = a + ib, then, Limn→∞Re(zn) = a, Limn→∞Im(zn) = b,
Limn→∞|zn| = |c|(= (a2 + b2)1/2).

2. If [zn]∞n=0 is any complex, convergent sequence, it is bounded . (The converse is not
necessarily true!)

3. If [zn]∞n=0 is any complex sequence converging to the finite limit z, and c is any complex
number, the sequence [czn]∞n=0 converges to cz.

4. If [an] , [bn]∞n=0 are complex sequences convergent to finite complex numbers a, b

respectively, their sum defined by, [an + bn]∞n=0 and elementary product defined by
[anbn]∞n=0 are also convergent, respectively to a + b and ab. Thus the sum and product
of convergent sequences converge to the sum and product of the limits.

5. If [an] , [bn]∞n=0 are convergent complex sequences with limits a, b and b 6= 0, there is a
finite integer m and a positive real number l such that |bn| > l > 0 for all n > m and the
infinite sequence,

ˆ an

bn

˜∞

n=m+1
converges to a

b
.

6. A complex sequence [an] with the property that |an|1/n ≤ r < 1, converges to zero.
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3. Discussion of Theorem 2.1

I will merely indicate the key ideas of the proof. You are expected to complete them! The
problems explain some details.
1.) Left as an exercise.
2.) Since we know that the limit of the sequence exists (call it) c we know that |c− zn| can be
made as small as we please by choosing n sufficiently large. This means for all large
enough n, |c − zn| < 1 say. Using the triangle inequality we see that this implies,
|zn| = |zn − c + c| ≤ |c| + 1 for all sufficiently large n. This shows that zn is a bounded
sequence.
3.) Consider the sequence [kzn]. Now, |kzn − kc| < |k||zn − c|. We know that |zn − c|

can be made as small as we please by choosing n large enough. This means that we can
make the LHS also arbitrarily small, since |k| is a fixed, finite, positive number. This proves
the result, which is sometimes written as,

k(Limn→∞zn) = Limn→∞(kzn) = kc
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3. Discussion of Theorem 2.1: contd.

4.) Consider an + bn − (a + b) = (an − a) + (bn − b). Using the triangle inequality,
|an + bn − (a + b)| ≤ |(an − a)| + |(bn − b)|. By choosing n sufficiently large both terms
on the right can be made arbitrarily small:

Limn→∞(an + bn) = Limn→∞an + Limn→∞bn

Now, |anbn − ab| = |(an − a)bn + a(bn − b)| ≤ |(an − a)||bn| + |a||(bn − b)|. Convergent
sequences are bounded, hence RHS can be made arbitrarily small by choosing n large
enough:

Limn→∞(anbn) = (Limn→∞an)(Limn→∞bn)

5.) Now from (1), Limn→∞|bn| = |b| > 0. It is easily seen geometrically that there is an
m such that ||b| − |bn|| < |b|/2 for all n > m. Therefore |bn| > |b|/2 > 0 for all such n.

Hence an/bn is bounded for n > m. Consider (a
b
− an

bn
) =

(abn−anb)
bbn

. This can be
made as small as we please by choosing n to be sufficiently large:

Limn→∞(
an

bn
) =

Limn→∞an

Limn→∞bn

6.) Now, |an|1/n < r < 1. This implies, |an| < rn. Since r < 1 as n → ∞, an → 0,
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3. The Cauchy convergence criterion

We have defined convergence of sequences as if we knew in advance what the limit is.
Cauchy proved a general criterion for the convergence of any sequence which does not

require the prior knowledge of the limit.

Theorem 2.2: (”The Cauchy convergence criterion”) Let [un] be a an infinite sequence of
complex numbers. Then, a necessary and sufficient condition for the convergence of this
sequence is that, for any given positive number ǫ (which can be arbitrarily small) there
must exist an integer N(ǫ) such that, |un − um| < ǫ for all m, n > N(ǫ).

I shall prove that the criterion is necessary . It is beyond the scope of this course to prove it
is also sufficient . Thus, suppose, Limn→∞un = u. Since
|un − um| = |un − u + u − um| ≤ |un − u| + |um − u|, we see that choosing N(ǫ)

such that |un − u| < ǫ/2 for all n > N(ǫ), we can satisfy the Cauchy criterion. Hence all
convergent sequences satisfy the criterion.

In the theory of convergent real sequences the same criterion occurs. There, the sufficiency
proof depends upon subtle properties of the real number system. If we take these for
granted, we may apply the real-variable Cauchy criterion to the real and imaginary parts
separately and derive the sufficiency of criterion for complex sequences.
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4. Infinite series of complex numbers

Definition 2.7: An infinite sequence s1, .., sn, .. of complex numbers sn is called an infinite

series if it can be written in the form,

sn = Σn
j=1uj

where uj is called the j-th term of the series. If the sequence [sn] is convergent to a finite

limit we say that the series is convergent . Otherwise, it is called a divergent series . The
limiting value of the sequence is called the sum of the infinite series. This is written as,
s = Σ∞

n=1un.

The element sn is usually referred to as the n-th partial sum of the series . A divergent
series has no determinate "sum".

Examples:

1. Obviously any infinite sequence can be interpreted as an "infinite series". We merely
define the n-th term in terms of the partial sums: un = sn − sn−1; s0 = 0.

2. Consider sn = 1 + z + z2 + .. + zn; z a complex number. This is called the geometric

series with common ratio z. Evidently, we have by the usual algebra,

sn =
1 − zn+1

1 − z
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4. Infinite series: examples

Examples:

3. We see that if z < 1, Limn→∞sn = 1
1−z

= s. When |z| ≥ 1, the series is divergent .

4. A series in which uj is identically zero for j > l, where l is a fixed integer is called a finite

series . Obviously any finite series is automatically convergent.

5. You have already encountered infinite series with real terms . Of course all complex infinite
series are equivalent to a pair of real infinite series. Thus if uj = aj + ibj and
An = Σn

j=1aj ; Bn = Σn
j=1bj . From our work with sequences, we know that the complex

series converges if and only if the two real series do. All the tests of convergence for real
series can be applied to the complex series by testing (if necessary) the real and imaginary
parts.

6. The series defined by the j-th term uj = 1
2j + i(−1)j is divergent (why?).
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4. Infinite series: basic theorems

Theorem 2.3:

1. If sn are the partial sums of a convergent series of complex terms, there exists a real
positive number K such that |sn| < K for all n.

2. If sn = Σn
j=1un are the partial sums of a convergent series, Limn→∞un = 0 ("the

n-th term of a convergent series tends to zero").

3. If sn = Σn
j=1un are the partial sums of a series and Mn = Σn

j=1|un| are the partial
sums of its real, dominant series , the series converges if the dominant series does.

Proof: 1. Follows from Theorem 2.1.
2. We have seen that un+1 = sn+1 − sn. Hence,
|un+1| = |sn+1 − sn| ≤ |sn+1 − s| + |sn − s|. As n → ∞, we see that the RHS tends
to zero leading to the result.
3. We apply the Cauchy criterion for convergence . Let, n ≤ m:

|sn − sm| = |un+1 + .. + um|

≤ |un+1| + .. + |um|

≤ Mm − Mn
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4. Infinite series: absolute convergence

3. (contd.) Since we are given that the positive, monotonic increasing sequence of partial
sums Mn is convergent, applying the Cauchy criterion to the convergent dominant series

implies (via the Cauchy criterion for the complex series!) the theorem. This is a very

important result!

An infinite series whose real dominant series converges is called an absolutely convergent

series . There are series which converge but not absolutely. They are called conditionally

convergent series . Absolutely convergent series have many "nice" properties, as we shall
learn, which conditionally convergent ones do not have.

This theorem often helps us to determine if a given series is convergent or not. If the n-th
term of an infinite series does not tend to zero (as n → ∞ ) we can confidently assert
that the series must be divergent , since the latter is a necessary condition for convergence
according to Theorem 2.3. Unfortunately, the converse is not true! Thus there are
divergent series the n-th terms of which do tend to zero. Let us consider an interesting
"counter-example":

sn = Σn
j=1

p

(j + 1) −
p

(j) =
p

(n + 1) − 1
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4. Infinite series: absolute convergence

(Contd.) Clearly the series diverges (ie does not tend to any finite limit). However, the
n-th term is,

un =
p

(n + 1) −
p

(n)

=
n + 1 − n

p

(n + 1) +
p

(n)

=
1

p

(n + 1) +
p

(n)

Clearly the n-th term tends to zero as n → ∞. Hence, simply checking that the n-th
term of a series tends to zero with n is not sufficient to conclude the convergence of a
series.

Absolute convergence guarantees convergence according to the Th. 2.3. However, there
are series which converge but not absolutely. In the problem set you will find an exercise
which explains a typical case in which this happens. Of course this is well-known even
for infinite series using reals; complex numbers do not bring in anything new. In most
applications (there are always exceptions!) we will be dealing mainly with absolutely
convergent series.
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5. Infinite series: some key concepts

Theorem 2.4: If sn, tn are partial sums of convergent/absolutely convergent series (to
sums s, t), asn + btn is convergent/absolutely convergent (to sum as + bt) where a, b

are arbitrary complex numbers.

Proof: For ordinary convergence, this follows from the properties of the corresponding
Theorem 2.1 for sequences. Let un, vn be the n-th terms of sn, tn respectively. The
absolute convergence of these series implies that Sn = Σn

j=1|uj |; Tn = Σn
j=1|vj | are

real dominants converging to sums S, T say. Obviously, Sn ≤ S; Tn ≤ T . The real
dominant of asn + btn = Σn

j=1|aun + bvn| ≤ |a|Sn + |b|Tn ≤ |a|S + |b|T . Now, this
dominant is a series of positive terms. Its partial sums form a monotonic increasing
sequence which is bounded above. From the basic principles of real number system, it
must be a convergent sequence. Hence the result follows.

Definition 2.8: Consider a sequence (real or complex) u1, u2, ...un, ... A rearrangement of
this sequence is another sequence, v1, v2, .., vn, .. with the following property. Each vj is
simply a certain uk so that every term of the second sequence is a term from the first,
and every term of the first sequence occurs once in the second.
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5. Infinite series: re-arrangements

We know from the laws of Algebra that if we have a finite sequence , the sum is unchanged
no matter what permutation/re-arrangement of the terms. It was shown by Riemann in a
beautiful theorem that if an infinite series has its terms re-arranged in a certain way, it
can be made to converge to any number at all, so long as the infinite series is only

conditionally convergent!

This means the commutative law of addition of algebra is not generally valid for conditionally
convergent series.

However, Cauchy showed that if an infinite series is absolutely convergent no matter what
re-arrangement we choose of its terms, its sum is invariant, as if the series were finite! Thus,
as far as re-arrangements of a series are concerned, absolutely convergent series
behave "well" whilst conditionally convergent (or divergent) series behave "badly". This
is stated in the following theorem which you can assume freely without proof.

Theorem 2.5: An absolutely convergent series may be summed in any re-arrangement to
the same sum.
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5. Infinite series: the Cauchy product

The Cauchy product (not to be confused with products introduced for sequences!) of two
absolutely convergent series is explained in the following Theorem. This important
concept (crucial to many applications) is again stated without proof.

Theorem 2.6: Let sn = Σn
j=0uj ; tn = Σn

j=0vj be any two absolutely convergent series
converging to S, T respectively. Then their Cauchy product Wn = Σn

k=0wk is defined by
Cauchy product rules:

w0 = u0v0

w1 = u0v1 + u1v0

.... = ...

wk = Σk
j=0ujvk−j

Then,

Limn→∞Wn = = Σ∞
k=0wk = (Σ∞

j=0uj)(Σ
∞
j=0vj)

= ST

The "Cauchy product series" converges absolutely. The reason for this particular rule for
wk will be explained later.
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