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1. Real numbers

® The set of all real numbers (hereafter denoted by R ) form a commutative
ordered field . This means that if a, b are any two real numbers, their sum, and
product are defined and are real numbers. A commutative field is subject to the

Laws of Algebra

a-+b

ab

a+ (b+ c)
a(bc)
a(b+ c)
a—+ 0

a—+ (—a)

a.(a™ ")

b+ a “additive — commutativity”

ba “multiplicative — commutativity”
(a+b)+c “additive — associativity”
(ab)c “multiplicative — associativity”’
ab + ac “distributivity”

a “additive — identity”’

0 “additive — inverse”

a “pultiplicative — identity”’

1 (a #0) “multiplicative — inverse”
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1. Real numbers. contd.

» |[f any two real numbers a, b are given, we can compare them . Thus, eithera > b
or a < b, or a = b. These are the only mutually exclusive alternatives.
Furthermore, the “ordering relation” is a “total order” which is transitive : If a > b
and b > ¢, then a > c. Furthermore, a = bifandonly ifa > band b > a are
simultaneously true.

® This makes the real numbers an ordered field. Furthermore, it is complete ,
which means that every monotonic increasing sequence of real numbers
either tends to +oo or converges to a bounded real limit . Similarly, every
monotonic decreasing sequence of real numbers must either tend to —oo or to
a finite real number.

® The set of all rational numbers form an ordered field, but is not complete. This
means that the limit of a sequence of rational numbers need not be a rational
number. Cauchy and Dedekind showed that the real number field can be
contructed by completing the rational number field.

® The set of real numbers is not an algebraically closed field . Thus, there are
algebraic equations which have no real solutions ; e.g z° + 1 = 0. AT - a2



. Complex numbers. Gauss' construction

» prroblem: Can we “extend algebraically” the real field in some way so that it is
a sub-field of some larger field which is algebraically closed ?

B Answer: “Yes, but...!” (Gauss) We can indeed construct such a field but will find
that it cannot be an ordered field . Thus, in general, two elements of that field
cannot be compared. We'll look in detail at Gauss’ construction.

® Definition 1.1 : We designate by (a,b) an ordered pair of real numbers, « and b.
For future reference, we shall call such a pair a complex number . The first
element a is called the real part and the second element b the imaginary part of
the complex number z = (a,b).

® Definition 1.2 : The special pair, (0,0) will be called the complex zero and will be
denoted (for now) by 0, as in vector analysis in the plane.

® Definition 1.3 : Two complex numbers, (a,b) and (¢, d) are said to be equal if

andonlyif a=c;b=d.
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2. Complex numbers: algebraicrules

® Definition 1.4 : If 21 = (z1,v1), 22 = (x2,y2) are any two complex numbers, we
define their sum/difference by the vector or component-wise addition rule,

21 E20 = (1 Ex2,y1 = Y2)

» Rremark: It is obvious that the addition thus defined is both commutative and
associative . Furthermore, the complex zero is the additive identity . Thus our
“complex numbers” already form an additive Abelian group . In fact this is none
other than the algebra of vectors in a two-dimensional Euclidean plane-it was
Gauss’ great discovery that such 2-vectors can be multiplied also.

® Definition 1.5 : If 21, 22 are any two complex numbers, we define their product to
be the complex number, z; x 2o = (X,Y) = Z:

z1%22 = [(z172 —Y1y2), (T1y2 + y172)]
— (X7Y>
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2. Complex numbers. magnitude

® Definition 1.6 : The length or magnitude of a complex number z = (z, y) is defined
to be the real, non-negative number , |z| = (z + y?)'/2.

» Remark: The rules are now complete! You immediately realise that every
complex number can be represented by a 2-vector in the complex plane . The
x-axis is called the real axis , whilst the y-axis (for largely historical reasons) is
called the imaginary axis .

» The magnitude of the complex number is obviously the ordinary length of the
2-vector representing it. The angle (measured anti-clockwise) which it makes
with the positive real axis (using the usual conventions of trigonometry) is called
the argument/phase/amplitude  of the complex number. | will use these terms
interchangeably. It is denoted by Arg(z).

® This geometrical representation is called the Argand-Wessel diagram . From
simple trigonometry, we see that z = (z,y) = (|z| cos @, |z| sin 6), where
6 = Arg(z).
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2. Complex numbers. basic properties

® | shall now present the basic properties of our complex number system in a
series of simple propositions. It is an excellent excercise (see Problem set 1)
for you to prove them, using only the information provided thus far.

» Theorem 1.1: The “Laws of Algebra” enumerated in Section 1 for real numbers
are valid for complex numbers provided the following provisos apply: the
symbols for addition and multiplication are to be interpreted according to
definitions 1.4 and 1.5 of this section. Zero is to be understood as 0 = (0, 0).
“1” Is to be understood as the complex number 1 = (1,0). Furthermore, all real
numbers x can be represented by the complex numbers, (z, 0) (this is saying
that the complex numbers of this form behave exactly like real numbers!).

$» The only point which requires calculation is proving the existence of a
“multiplicative inverse” to a complex number, z = (z, y). You should show that
provided a complex number is not 0, it has an inverse:

-1 x —Y
< o (a:2+y2’:c2—|—y2)
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Complex numbers. polar form, conjugac

» We have seen that any complex number z = (z,y) can be written in the

Modulus-Amplitude or Magnitude-Argument or Polar form:

z = |z|[(cosf,sin6)
2| = (" )"
0 = tan '(y/z)

The complex number e(0) defined by e(0) = (cosf,sin @) is said to be
unimodular , namely has modulus unity . It therefore represents a 2-vector with
its base at (0,0) and tip on the unit circle . It makes an angle 6 with the positive
real () axis. In the Problem Set 1, several interesting and important
properties of complex numbers are obtained from the above basic definitions.

® If 2= (z,y) isany complex number, z = (z, —y) = |z|e(—0) is called its
conjugate . Note that the conjugate of the conjugate is the original number!
Z = z. Real numbers are represented by complex numbers with zero imaginary
parts. They are self-conjugate .
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2. Complex numbers. key relations

P Theorem2.1: Let, z1 = (x1,¥y1); 22 = (w2, y2) be arbitrary complex numbers.
Then, the following relations hold:

21292 — 211122 6(61)6(92)

z1||z2|e(01 + 62)

’2122| — 211122
_ 2
2121 f— <1
(w122 +y2y2)° < (21 +yi) (25 +y3)
21 + 22| < |zi| + |22
21 — 22| > |(Jz1] = [22])]

These are proved in the Problem set 1. You should learn these results as they
are repeatedly used! The first two constitute the “Multiplication rules” for
complex arithmetic: “the modulus of the product equals the product of the moduli of

the factors; the amplitude of the product is the sum of the amplitudes of the f actors”.
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2. Complex numbers. deductions (1)

® The third states that multiplying a complex number by its conjugate is always a
real, positive number (except for 0) equal to the square of its modulus. The
fourth is called the Cauchy-Schwarz inequality and applies to any four real numbers
x1,T2,Yy1,y2. The fifth is called the triangle inequality . The last is a slight variant
of the same.

® Itis obvious from the rules that the additive inverse of z = (x,y) is

—z = (—x, —y).
® The multiplicative inverse  of z is written as 2! = % — |jg — e(|;’9).
icinpe 21 |21
® Complexdivision: L = |22|e(91 — 02)

® The complex number defined by the equation, i = (0, 1) is called the imaginary
unit . It and its conjugate, —i satisfy the quadratic equation-which no real
number can satisfy,

2

z24+1 = 0 (1)
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2. Complex numbers. deductions (2)

$® Every complex number z = (z,y) can be written uniquely in the form,

z = xl1+4uyi
= x+1iy

r = Re(z)

y = Im(z)

Henceforth, without incurring confusion, | shall drop the bold-faces on 1,0, i
and simply use, 1,0,¢ respectively.

» Proposition | : If z1, 2o are any two complex numbers, the equation z1.z2 = 0 can
only be true if one or both the factors vanish.

°

Proof : Follows easily from Theorem 2.1 (convince yourself of this!).

°

Proposition Il : Every equation/identity in which only finite algebraic operations
are used and which applies for real variables, also applies to complex
variables. This is also a simple consequence of Th. 2.1
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2. Complex numbers. deductions (3)

B Proposition 3: “Lagrange’s identity”  : Suppose ag, b, k = 1,2, ..n are arbitrary complex
numbers. The following identity holds:

S0 iapbel® + Si<kej<nlarb; —ajbpl? = (SP_qlar?)(SRoq1bk]?)
Proof : Consider,
Zl§k<j§n|ak6j — aj5k|2 = El§k<j§n(ak6j — ajBk)(akbj — C_ijk)

= Sickej<n(arl®[bi? + laz]?[bx]?)

—Y1<k<j<n(ara;bpb; + ajbrarb;)

|EZ:1akbk|2 = Zzlzyzlakbkajbj
211 12
— k—1lak|”[bk|
+31<k<j<n(arajbrbj + ajbparb;)
adding the two identities, we get the stated result.

® Animportant corollary: The Cauchy-Schwarz inequality for complex numbers

Sh_qarbi]® < ( Z:1‘ak‘2)(2?=1’bj‘2) 2)
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