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1. Real numbers

The set of all real numbers (hereafter denoted by R ) form a commutative

ordered field . This means that if a, b are any two real numbers, their sum , and
product are defined and are real numbers. A commutative field is subject to the
Laws of Algebra :

a + b = b + a “additive − commutativity′′

ab = ba “multiplicative − commutativity′′

a + (b + c) = (a + b) + c “additive − associativity′′

a(bc) = (ab)c “multiplicative − associativity′′

a(b + c) = ab + ac “distributivity′′

a + 0 = a “additive − identity′′

a + (−a) = 0 “additive − inverse′′

a.1 = a “nultiplicative − identity′′

a.(a−1) = 1 (a 6= 0) “multiplicative − inverse′′
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1. Real numbers: contd.

If any two real numbers a, b are given, we can compare them . Thus, either a > b

or a < b, or a = b. These are the only mutually exclusive alternatives.
Furthermore, the “ordering relation” is a “total order” which is transitive : If a > b

and b > c, then a > c. Furthermore, a = b if and only if a ≥ b and b ≥ a are
simultaneously true.

This makes the real numbers an ordered field. Furthermore, it is complete ,
which means that every monotonic increasing sequence of real numbers
either tends to +∞ or converges to a bounded real limit . Similarly, every
monotonic decreasing sequence of real numbers must either tend to −∞ or to
a finite real number.

The set of all rational numbers form an ordered field, but is not complete. This
means that the limit of a sequence of rational numbers need not be a rational
number. Cauchy and Dedekind showed that the real number field can be
contructed by completing the rational number field.

The set of real numbers is not an algebraically closed field . Thus, there are
algebraic equations which have no real solutions ; e.g x2 + 1 = 0. AT – p.3/12



2. Complex numbers: Gauss’ construction

Problem: Can we “extend algebraically” the real field in some way so that it is
a sub-field of some larger field which is algebraically closed ?

Answer: “Yes, but...!” (Gauss) We can indeed construct such a field but will find
that it cannot be an ordered field . Thus, in general, two elements of that field
cannot be compared. We’ll look in detail at Gauss’ construction.

Definition 1.1 : We designate by (a, b) an ordered pair of real numbers, a and b.
For future reference, we shall call such a pair a complex number . The first
element a is called the real part and the second element b the imaginary part of
the complex number z ≡ (a, b).

Definition 1.2 : The special pair, (0, 0) will be called the complex zero and will be
denoted (for now) by 0, as in vector analysis in the plane.

Definition 1.3 : Two complex numbers, (a, b) and (c, d) are said to be equal if

and only if a = c; b = d.
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2. Complex numbers: algebraic rules

Definition 1.4 : If z1 = (x1, y1), z2 = (x2, y2) are any two complex numbers, we
define their sum/difference by the vector or component-wise addition rule,

z1 ± z2 = (x1 ± x2, y1 ± y2)

Remark: It is obvious that the addition thus defined is both commutative and

associative . Furthermore, the complex zero is the additive identity . Thus our
“complex numbers” already form an additive Abelian group . In fact this is none
other than the algebra of vectors in a two-dimensional Euclidean plane-it was
Gauss’ great discovery that such 2-vectors can be multiplied also.

Definition 1.5 : If z1, z2 are any two complex numbers, we define their product to
be the complex number, z1 ∗ z2 = (X, Y ) = Z:

z1 ∗ z2 = [(x1x2 − y1y2), (x1y2 + y1x2)]

= (X, Y )
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2. Complex numbers: magnitude

Definition 1.6 : The length or magnitude of a complex number z = (x, y) is defined
to be the real, non-negative number , |z| = (x2 + y2)1/2.

Remark: The rules are now complete! You immediately realise that every
complex number can be represented by a 2-vector in the complex plane . The
x-axis is called the real axis , whilst the y-axis (for largely historical reasons) is
called the imaginary axis .

The magnitude of the complex number is obviously the ordinary length of the
2-vector representing it. The angle (measured anti-clockwise) which it makes
with the positive real axis (using the usual conventions of trigonometry) is called
the argument/phase/amplitude of the complex number. I will use these terms
interchangeably. It is denoted by Arg(z).

This geometrical representation is called the Argand-Wessel diagram . From
simple trigonometry, we see that z = (x, y) = (|z| cos θ, |z| sin θ), where
θ = Arg(z).
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2. Complex numbers: basic properties

I shall now present the basic properties of our complex number system in a
series of simple propositions. It is an excellent excercise (see Problem set 1)
for you to prove them, using only the information provided thus far.

Theorem 1.1: The “Laws of Algebra” enumerated in Section 1 for real numbers
are valid for complex numbers provided the following provisos apply: the
symbols for addition and multiplication are to be interpreted according to
definitions 1.4 and 1.5 of this section. Zero is to be understood as 0 = (0, 0).
“1” is to be understood as the complex number 1 = (1, 0). Furthermore, all real
numbers x can be represented by the complex numbers, (x, 0) (this is saying
that the complex numbers of this form behave exactly like real numbers!).

The only point which requires calculation is proving the existence of a
“multiplicative inverse” to a complex number, z = (x, y). You should show that
provided a complex number is not 0, it has an inverse:

z−1 = (
x

x2 + y2
,

−y

x2 + y2
)
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2. Complex numbers: polar form, conjugacy

We have seen that any complex number z = (x, y) can be written in the
Modulus-Amplitude or Magnitude-Argument or Polar form:

z = |z|(cos θ, sin θ)

|z| = (x2 + y2)1/2

θ = tan−1(y/x)

The complex number e(θ) defined by e(θ) = (cos θ, sin θ) is said to be
unimodular , namely has modulus unity . It therefore represents a 2-vector with
its base at (0, 0) and tip on the unit circle . It makes an angle θ with the positive
real (x) axis. In the Problem Set 1, several interesting and important
properties of complex numbers are obtained from the above basic definitions.

If z = (x, y) is any complex number, z̄ = (x,−y) = |z|e(−θ) is called its
conjugate . Note that the conjugate of the conjugate is the original number!
¯̄z = z. Real numbers are represented by complex numbers with zero imaginary
parts. They are self-conjugate .
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2. Complex numbers: key relations

Theorem 2.1: Let, z1 = (x1, y1); z2 = (x2, y2) be arbitrary complex numbers.
Then, the following relations hold:

z1z2 = |z1||z2|e(θ1)e(θ2)

= |z1||z2|e(θ1 + θ2)

|z1z2| = |z1||z2|

z1z̄1 = |z1|
2

(x1x2 + y2y2)
2 ≤ (x2

1 + y2
1)(x2

2 + y2
2)

|z1 + z2| ≤ |z1| + |z2|

|z1 − z2| ≥ |(|z1| − |z2|)|

These are proved in the Problem set 1. You should learn these results as they
are repeatedly used! The first two constitute the “Multiplication rules” for
complex arithmetic: “the modulus of the product equals the product of the moduli of

the factors; the amplitude of the product is the sum of the amplitudes of the f actors”.
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2. Complex numbers: deductions (1)

The third states that multiplying a complex number by its conjugate is always a
real, positive number (except for 0) equal to the square of its modulus. The
fourth is called the Cauchy-Schwarz inequality and applies to any four real numbers

x1, x2, y1, y2. The fifth is called the triangle inequality . The last is a slight variant
of the same.

It is obvious from the rules that the additive inverse of z = (x, y) is
−z = (−x,−y).

The multiplicative inverse of z is written as z−1 = 1
z

= z̄
|z|2

= e(−θ)
|z|

.

Complex division: z1

z2

= |z1|
|z2|

e(θ1 − θ2)

The complex number defined by the equation, i = (0, 1) is called the imaginary

unit . It and its conjugate, −i satisfy the quadratic equation-which no real
number can satisfy,

z2 + 1 = 0 (1)
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2. Complex numbers: deductions (2)

Every complex number z = (x, y) can be written uniquely in the form,

z = x1 + yi

= x + iy

x = Re(z)

y = Im(z)

Henceforth, without incurring confusion, I shall drop the bold-faces on 1,0, i

and simply use, 1, 0, i respectively.

Proposition I : If z1, z2 are any two complex numbers, the equation z1.z2 = 0 can
only be true if one or both the factors vanish.

Proof : Follows easily from Theorem 2.1 (convince yourself of this!).

Proposition II : Every equation/identity in which only finite algebraic operations
are used and which applies for real variables, also applies to complex
variables. This is also a simple consequence of Th. 2.1
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2. Complex numbers: deductions (3)

Proposition 3: “Lagrange’s identity” : Suppose ak, bk, k = 1, 2, ..n are arbitrary complex
numbers. The following identity holds:

|Σn
k=1akbk|

2 + Σ1≤k<j≤n|ak b̄j − aj b̄k|
2 = (Σn

k=1|ak|
2)(Σn

k=1|bk|
2)

Proof : Consider,

Σ1≤k<j≤n|ak b̄j − aj b̄k|
2 = Σ1≤k<j≤n(ak b̄j − aj b̄k)(ākbj − ājbk)

= Σ1≤k<j≤n(|ak|
2|bj |

2 + |aj |
2|bk|

2)

−Σ1≤k<j≤n(akājbk b̄j + aj b̄kākbj)

|Σn
k=1akbk|

2 = Σn
k=1Σn

j=1akbkāj b̄j

= Σn
k=1|ak|

2|bk|
2

+Σ1≤k<j≤n(akājbk b̄j + aj b̄kākbj)

adding the two identities, we get the stated result.

An important corollary: The Cauchy-Schwarz inequality for complex numbers ,

|Σn
k=1akbk|

2 ≤ (Σn
k=1|ak|

2)(Σn
j=1|bj |

2) (2)
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