μ-calculus over data words

Thomas Colcombet, Amaldev Manuel

LIAFA, Université Paris-Diderot

Data words and languages

A data word $w=\left(a_{1}, d_{1}\right) \ldots\left(a_{n}, d_{n}\right), a_{i} \in \Sigma, d_{i} \in \mathcal{D}$ where,

- Σ is a finite alphabet.
- \mathcal{D} is an infinite domain, eg. \mathbb{N}

Abstractions

- Distributed systems : Σ as program actions, \mathcal{D} as process identifiers
- Security protocols: Σ as messages, \mathcal{D} as nonces
- XML documents : Σ as attribute names, \mathcal{D} as values

A data language is a set of data words. Eg. Set of all data words where all data values are distinct.

We want automata and logics for these structures.

Automata and logics for data words

There is a whole menagerie of them!

Automata (Not exhaustive)
General set-up - Finite state automata + Memory structures

- Registers (Kamisky-Francez, Demri-Lazic)
- Pushdown (Kamisky et. al)
- Counters (M. Ramanujam, Demri et. al)
- Hash table (Schwentick-Bjorklund)
- Pebble (Neven-Schwentick-Vianu, Tan, ...)

None closed under Boolean operations.

Logics (Not exhaustive)
General set-up - Logic for words + logical/non-logical concoctions

- LTL + Registers (Demri-Lazic, ...)
- FO^{2} (Bojanczyk-Muscholl-Schwentick-Segoufin-David, ...)
- Mu-calculus + Registers (Jurdzinski et. al.)
- XPath (Figuera, Segoufin et. al.)
- Guarded-MSO (Colcombet-Ley-Puppis)

A thematic description

To recognize a data language one needs unbounded memory - Consider the set of all data words where all data values are distinct.
Two options

- Develop suitable notions of finiteness - Eg. graph measures like tree-width, Data monoids, Sets with atoms...
- Consider data words in their full generality i.e. as graphs eg. Walking automata, this work.
We consider data words as graphs.

Data words as graphs

A data language $L \subseteq(\Sigma \times \mathcal{D})^{*}$ is invariant under permutations of \mathcal{D}.

$$
w=\begin{array}{lllllll}
a & b & a & a & b & a & b \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet
\end{array}
$$

String projection

$$
\operatorname{str}(w)=a \quad b \quad a \quad a \quad b \quad a \quad b
$$

Classes

class projections

$$
\begin{array}{ccc}
a & a & a \\
b & a & b \\
& b &
\end{array}
$$

Data word as a graph

The Graph $\left([n], \Sigma,+1,+1^{c}\right)$

Data automata

A Data automaton A is a pair (B, C) where $B: \Sigma \rightarrow \Sigma^{\prime}$ is a letter-to-letter finite state transducer and C is a finite state automaton over Σ^{\prime}.

Run of a aata automata

- B runs over the string projection of the data word and outputs a word over the alphabet Σ^{\prime}.
- C run over each of the class projections of the output of B.

The automaton A accepts if both B and C have successful runs.
Equivalent to EMSO^{2} on data words \& Emptiness decidable! - BMSSD05

Data automat - examples

Example (All classes have even length)
B - copies the input to the output.
C - accepts when the input word has even length.

Example (Even number of classes of even length)

$\partial \gamma$

B - guesses the first positions of the class and labels them by E or O and verifies there are even number of E.
C - Verifies that the guess of B is correct and the class is of even length if and only if it is labelled E.

Our contribution

- The class of data languages (both for finite and ω-data words) defined by Data Automata is explored using μ-calculus.
- Various classes (in particular complementable ones) are defined and classified upto equivalence.
- Hierarchy theorems for some classes.

Data automata
FO^{2}

Bounded Mode-alternation

Take an unambiguous (at most one successful run) letter-to-letter transducer A.

- Global transduction: When A reads the string projection and outputs.
- Class transduction : When a copy of A runs on each class and outputs.
$\mathrm{BMA}=$ Cascade of transducers of unambiguous class and global transducers.

BMA examples

Example (All classes have even length)
B - copies the input to the output.
C - accepts when the input word has even length.
Example (Even number of classes of even length)

C - Guesses the parity of the class and labels the first position by E or O. G - Verifies that there are even number of E.

Bridge $_{k}$

Bridgek

Bridge $_{k}$
Bridge ${ }_{k}$ is accepted by a cascade of height $2 k$.

BMA is closed under complement.

$$
A=\left(B_{1}, B_{2}, \ldots B_{1<}\right)
$$

Assme w $\& L(A)$

Guen
Gnen
Vecifing by poweset

AMA \subsetneq Data automate.

- B guesses all labellings by all transductions and verifies the global transductions are correct.
- C verifies the class transductions are correct.

Hence BMA \subsetneq Data automata since DA are not closed under complementation.

What is a logic corresponding to BMA ?
μ-calculus on data words

$$
w=\left([n], \Sigma,+1,+1^{c}\right)
$$

Algebra of functions from $2^{[n]} \rightarrow 2^{[n]}$ with extremal fix-points.

Basic functions

$$
\begin{aligned}
& \llbracket T \rrbracket_{w}=\text { "constant function which maps to all positions" } \\
& \llbracket p \rrbracket_{w}=\text { "All positions in } w \text { where } p \text { holds." } \\
& \llbracket x \rrbracket_{w}=\text { id }
\end{aligned}
$$

Basic operations

$$
\begin{array}{ll}
\llbracket \varphi_{1}(x) \vee \varphi_{2}(x) \rrbracket_{w} & =\llbracket \varphi_{1}(x) \rrbracket_{w} \cup \llbracket \varphi_{2}(x) \rrbracket_{w} \\
\llbracket \varphi_{1}(x) \wedge \varphi_{2}(x) \rrbracket_{w} & =\llbracket \varphi_{1}(x) \rrbracket_{w} \cap \llbracket \varphi_{2}(x) \rrbracket_{w} \\
\llbracket \neg \varphi_{1}(x) \rrbracket_{w} & =[n] \backslash \llbracket \varphi(x) \rrbracket_{w} \\
\llbracket \mathrm{X}^{g} \varphi(x) \rrbracket_{w} & =\llbracket \varphi(x) \rrbracket_{w}-1 \\
\llbracket \mathrm{Y}^{g} \varphi(x) \rrbracket_{w} & =\llbracket \varphi(x) \rrbracket_{w}+1 \\
\llbracket \mathrm{X}^{c} \varphi(x) \rrbracket_{w} & =\llbracket \varphi(x) \rrbracket_{w}-1^{c} \\
\llbracket \mathrm{Y}^{c} \varphi(x) \rrbracket_{w} & =\llbracket \varphi(x) \rrbracket_{w}+1^{c}
\end{array}
$$

Extremal fix-points, when the function is monotone

$$
\begin{aligned}
\llbracket \mu x \cdot \varphi(x) \rrbracket_{w} & =\operatorname{LFP}\left(\llbracket \varphi(x) \rrbracket_{w}\right) \\
\llbracket \nu x \cdot \varphi(x) \rrbracket_{w} & =\operatorname{GFP}\left(\llbracket \varphi(x) \rrbracket_{w}\right)
\end{aligned}
$$

Function composition

Let

$$
\varphi(x) \equiv f \text { and } \psi(y) \equiv g
$$

Then,

$$
\varphi(x / \psi(y)) \equiv f \circ g
$$

In general for a class of formulas $S, \operatorname{Comp}(S)$ is the set closed under substitutions.
$\operatorname{Comp}(S)$ is the set of all finite iterations of functions in S

Bounded Mode-Alternation

$$
M^{g}=\left\{\mathrm{X}^{g}, \mathrm{Y}^{g}\right\} \quad M^{c}=\left\{\mathrm{X}^{c}, \mathrm{Y}^{c}\right\}
$$

global functions

Formulas $\left(M^{g}\right)$:- All formulas which uses only M^{g}.
class functions
Formulas (M^{c}) :- All formulas which uses only M^{c}.

BMA - -"finite composition of class functions and global functions"

$$
B M A=\operatorname{Comp}\left(\text { Formulas }\left(M^{g}\right) \cup \text { Formulas }\left(M^{c}\right)\right)
$$

Examples

Example (All classes have even length)

$$
\begin{aligned}
\text { first }: & =\neg \mathrm{Y}^{g} \text { true } \\
\text { last }: & =\neg \mathrm{X}^{g} \text { true } \\
\text { cfirst }: & =\neg \mathrm{Y}^{c} \text { true } \\
\text { clast }: & =\neg \mathrm{X}^{c} \text { true }
\end{aligned}
$$

'First position of a class of even length" $\quad \varphi:=\left(\right.$ cfirst $\wedge \theta x .\left(X^{c}\right.$ clast $\left.\vee X^{c} X^{c} x\right)$)
'All classes are of even length" $:=G($ cfirst $\rightarrow \varphi)$

Example

Example (Even number of classes of even length)

"Last position where p holds" last $(p):=p \wedge \neg F p$
"First position where p holds" first $(p):=p \wedge \neg P p$
"Even occurrences of p from the end"
$\psi(p):=\theta x \cdot\left(\left(p \wedge \mathrm{X}^{g}(\neg p \mathcal{U} \operatorname{last}(p))\right) \vee\left(p \wedge \mathrm{X}^{g}\left(\neg p \mathcal{U}\left(p \wedge \mathrm{X}^{g}(\neg p U x)\right)\right)\right)\right)$

Even number of even classes $:=F($ first $(\varphi) \wedge \psi(\varphi))$

Comp of class and global functions is equivalent to Cascades of class and global transducers.
Composition height $=$ Cascade height Formulas and Cascades form a hierarchy under the height of composition. Is the hierarchy strict ?

Bridge

$$
\begin{gathered}
\text { Bridge }_{0} \equiv \text { last } \\
\text { Bridge }_{k} \equiv \text { first } \wedge\left(\text { Bridge }_{k-1} \vee \mathrm{X}^{g} \mathrm{X}^{c} \text { Bridge }_{k-1}\right) \\
\text { of } e_{k}
\end{gathered}
$$

$$
\text { Bridge }_{\infty} \equiv \theta x .\left(\text { first } \wedge\left(\text { last } \vee \mathrm{X}^{g} \mathrm{X}^{c} x\right)\right)
$$

Heirarchy Theorem

Theorem
Bridge ${ }_{2} \mathcal{O}(k)$ is not accepted by any cascade of height k.

Corrollary

Bridge $_{\infty}$ is not in BMA.

Combinatorial circuits

- circuits taking sequences of integers as input, defining functions of the form $f: \mathbb{N}^{*} \rightarrow\{0,1\}$,
- made up of gates of the form $g: E^{k} \rightarrow F$ where $E, F \subseteq \mathbb{N}$ such that either, - finitary gates E and F are finite, or
- binary gates $k \leq 2$.

The circuit lower-bound

Theorem
There does not exist a circuit of depth k which takes as input $x_{1}, \ldots, x_{2 k+1}, N$ and checks if

$$
\left(x_{1}+x_{2}+\ldots+x_{2^{k}+1}\right) \quad \bmod N=0
$$

reduction

- Given $x_{1}, \ldots, x_{2^{k}+1}, N$ construct a word w such that $\sum_{i=1}^{2^{k}+1} x_{i}=0 \bmod N$ if and only if w has a bridge.
- Given a cascade \mathcal{A} construct a circuit \mathcal{C} of the same height such that \mathcal{C} simulates \mathcal{A} on w.
- Binary gates will correspnd to class transductions.
- Finitary gates will correspnd to global transductions.

Question

Remarks

- BMA can be sequentialized, i.e. BMA is the cascade of left-to-right deterministic and right-to-left deterministic class and global transducers.
- If you drop the convervse modalities you have only left-to-right deterministic transducers.

Question

Cascade of word automata is equivalent to block product of finite semigroups. Is there an analogue for BMA ?

Thank you for your attention.
reduction

$\omega \in B_{i} B_{i} k y_{2} \Leftrightarrow \sum_{i} x_{i} m_{0} N=0$
reduction
$G 2$
C_{1}
D
1

G1 ताया

